AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption

Zirui Jia1,2,§( )Lifu Sun2,3,§Zhenguo Gao2Di Lan1( )
School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
School of Materials Science and Engineering, Yingkou Institute of Technology, Yingkou 115014, China

§ Zirui Jia and Lifu Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Modern communication systems call for high performance electromagnetic wave absorption materials capable of mitigating microwaves over a wide frequency band. The synergistic effect of structure and component regulation on the electromagnetic wave absorption capacity of materials is considered. In this paper, a new type of three-dimensional porous carbon matrix composite is reported utilizing a reasonable design of surface impedance matching. Specifically, a thin layer of densely arranged Fe-Cr oxide particles is deposited on the surface of porous carbon via thermal reduction to prepare the Fe-Cr-O@PC composites. The effect of Cr doping on the electromagnetic wave absorption performance of the composites and the underlying attenuation mechanism have been uncovered. Consequently, outstanding electromagnetic wave absorption performance has been achieved in the composite, primarily contributed by the enhanced dielectric loss upon Cr doping. Accordingly, an effective absorption bandwidth of 4.08 GHz is achieved at a thickness of 1.4 mm, with a minimum reflection loss value of –52.71 dB. This work not only provides inspiration for the development of novel absorbers with superior performance but also holds significant potential for further advancement and practical application.

Electronic Supplementary Material

Download File(s)
6939_ESM.pdf (570.9 KB)

References

[1]

Hardell, L.; Carlberg, M. Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncol. Lett. 2020, 20, 15.

[2]

Su, X. G.; Zhang, Y.; Wang, J.; Liu, Y. Q. Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C 2024, 12, 7775–7783.

[3]

Yang, X.; Xuan, L. X.; Men, W. W.; Wu, X.; Lan, D.; Shi, Y. P.; Jia, H. X.; Duan, Y. P. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 2024, 491, 151862.

[4]

Lan, D.; Qin, M.; Yang, R. S.; Chen, S.; Wu, H. J.; Fan, Y. C.; Fu, Q. H.; Zhang, F. L. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 2019, 533, 481–491.

[5]

Su, X. G.; Wang, J.; Liu, T.; Zhang, Y.; Liu, Y. N.; Zhang, B.; Liu, Y. Q.; Wu, H. J.; Xu, H. X. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 2024, 34, 2403397.

[6]

Feng, A. L.; Zhu, X.; Chen, Y. N.; Liu, P. T.; Han, F. B.; Zu, Y. Q.; Li, X. D.; Bi, P. F. Functional biomass-derived materials for the development of sustainable batteries. ChemElectroChem 2024, 11, e202400086.

[7]

Li, X. D.; Zhu, X.; Feng, A. L.; An, M. M.; Liu, P. T.; Zu, Y. Q. Electrochemical and surface analysis investigation of corrosion inhibition performance: 6-Thioguanine, benzotriazole, and phosphate salt on simulated patinas of bronze relics. J. Mater. Res. Technol. 2024, 29, 5667–5680.

[8]

Feng, A. L.; Liu, L.; Liu, P. T.; Zu, Y. Q.; Han, F. B.; Li, X. D.; Ding, S. J.; Chen, Y. N. Interfacial nanoparticles of Co2P/Co3Fe7 encapsulated in N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Energy 2024, 44, 101626.

[9]

He, Y. F.; Su, Q.; Liu, D. D.; Xia, L.; Huang, X. X.; Lan, D.; Liu, Y. N.; Huang, Y. D.; Zhong, B. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 2024, 491, 152041.

[10]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[11]

Zhou, X. F.; Jia, Z. R.; Zhang, X. X.; Wang, B. B.; Wu, W.; Liu, X. H.; Xu, B. H.; Wu, G. L. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 2021, 87, 120–132.

[12]

He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 2024, 34, 2316691.

[13]

Wen, B.; Yang, H. B.; Lin, Y.; Ma, L.; Qiu, Y.; Hu, F. F.; Zheng, Y. N. Synthesis of core-shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A. 2021, 9, 3567–3575.

[14]

Zhu, H. H.; Jiao, Q. Z.; Fu, R. R.; Su, P. J.; Yang, C.; Feng, C. H.; Li, H. S.; Shi, D. X.; Zhao, Y. Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties. J. Colloid Interface Sci. 2022, 613, 182–193.

[15]

Xiao, J. X.; Zhan, B. B.; He, M. K.; Qi, X. S.; Gong, X.; Yang, J. L.; Qu, Y. P.; Ding, J. F.; Zhong, W.; Gu, J. W. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2024, 34, 2316722.

[16]

Jia, R. X.; Zhang, R.; Yu, L. B.; Kong, X. L.; Bao, S. C.; Tu, M. Y.; Liu, X. H.; Xu, B. H. Engineering a hierarchical carbon supported magnetite nanoparticles composite from metal organic framework and graphene oxide for lithium-ion storage. J. Colloid Interface Sci. 2023, 630, 86–98.

[17]

Huang, X. M.; Liu, X. H.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Wu, G. L. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 2021, 4, 1398–1412.

[18]

Xu, L. J.; Lin, Z. C.; Chen, Y. J.; Fan, Z.; Pei, X. R.; Yang, S.; Kou, X.; Wang, Y. C.; Zou, Z. Y.; Xi, D. et al. Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects. Carbon 2023, 201, 1090–1114.

[19]

Tao, J. Q.; Zhou, J. T.; Yao, Z. J.; Jiao, Z. B.; Wei, B.; Tan, R. Y.; Li, Z. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021, 172, 542–555.

[20]

Zhang, S. J.; Cheng, B.; Jia, Z. R.; Zhao, Z. W.; Jin, X. T.; Zhao, Z. H.; Wu, G. L. The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 658–1698.

[21]

Lou, Z. C.; Wang, Q. Y.; Kara, U. I.; Mamtani, R. S.; Zhou, X. D.; Bian, H. Y.; Yang, Z. H.; Li, Y. J.; Lv, H. L.; Adera, S. et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 2022, 14, 11.

[22]

Gu, W. H.; Sheng, J. Q.; Huang, Q. Q.; Wang, G. H.; Chen, J. B.; Ji, G. B. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

[23]

Ma, L.; Li, S. Z.; Liu, F. C.; Ma, S.; Han, E. H.; Zhang, Z. D. Metal-organic framework-derived Co/C composite with high magnetization as broadband electromagnetic wave absorber. J. Alloys Compd. 2022, 906, 164257.

[24]

Tan, D. L.; Wang, Q.; Li, M. R.; Song, L. M.; Zhang, F.; Min, Z. Y.; Wang, H. L.; Zhu, Y. Q.; Zhang, R.; Lan, D. et al. Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2024, 492, 152245.

[25]

Lv, H. L.; Guo, Y. H.; Yang, Z. H.; Guo, T. C.; Wu, H. J.; Liu, G.; Wang, L. Y.; Wu, R. B. Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustainable Chem. Eng. 2018, 6, 1539–1544.

[26]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[27]

Zhang, S. J.; Li, J. Y.; Jin, X. T.; Wu, G. L. Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review. Int. J. Miner. Metall. Mater. 2023, 30, 428–445.

[28]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[29]

Han, Y.; Han, M. J.; Zhao, T. B.; Xia, Z. H.; Zou, J. X.; Liu, X. H.; Jia, Z. R. Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption. Mater. Res. Bull. 2024, 172, 112670.

[30]

Cao, F. C.; Zhang, Y.; Wang, H. Q.; Khan, K.; Tareen, A. K.; Qian, W. J.; Zhang, H.; Ågren H. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 2022, 34, e2107554.

[31]

Yan, F.; Guo, D.; Zhang, S.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property. Nanoscale 2018, 10, 2697–2703.

[32]

Jian, X.; Xiao, X. Y.; Deng, L. J.; Tian, W.; Wang, X.; Mahmood, N.; Dou, S. X. Heterostructured nanorings of Fe–Fe3O4@C hybrid with enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 9369–9378.

[33]

Zheng, T. T.; Zhang, Y.; Jia, Z. R.; Zhu, J. H.; Wu, G. L.; Yin, P. F. Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in Cu x S/CoFe2O4 composites. Chem. Eng. J. 2023, 457, 140876.

[34]

Ji, Y.; Miao, J.; Meng, K. K.; Ren, Z. Y.; Dong, B. W.; Xu, X. G.; Wu, Y.; Jiang, Y. Spin Hall magnetoresistance in an antiferromagnetic magnetoelectric Cr2O3/heavy-metal W heterostructure. Appl. Phys. Lett., 2017, 110, 262401.

[35]
Han, M. J.; Lan, D.; Zhang, Z. M.; Zhao, Y. Z.; Zou, J. X.; Gao, Z. G.; Wu, G. L.; Jia, Z. R. Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2024 , in press, DOI: 10.1016/j.jmst.2024.07.014.
[36]

Yan, J.; Ye, Z. D.; Lan, D.; Chen, W. X.; Jia, Z. R.; Wu, G. L. Transition metal carbides towards electromagnetic wave absorption application: State of the art and perspectives. Compos. Commun. 2024, 48, 101954.

[37]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[38]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[39]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[40]

Yang, J. M.; Wang, H.; Zhang, Y. L.; Zhang, H. X.; Gu, J. W. Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 2024, 16, 31.

[41]

Zhang, X.; Jia, Z.; Zhang, F.; Xia, Z.; Zou, J.; Gu, Z.; Wu, G. MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 610, 610–620.

[42]

Jia, Z. R.; Liu, J. K.; Gao, Z. G.; Zhang, C. H.; Wu, G. L. Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater. 2024, 34, 2405523.

[43]

Wang, C. X.; Liu, Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 2023, 15, 13.

[44]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[45]

Lan, D.; Hu, Y.; Wang, M.; Wang, Y.; Gao, Z. G.; Jia, Z. R. Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands. Compos. Commun. 2024, 50, 101993.

[46]

Zhao, T. B.; Jia, Z. R.; Liu, J. K.; Zhang, Y.; Wu, G. L.; Yin, P. F. Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 2024, 16, 6.

[47]
Han, Y.; Lan, D.; Han, M. J.; Xia, Z. H.; Zou, J. X.; Jia, Z. R. Construction of flower-like MoS2 decorated on Cu doped CoZn-ZIF derived N-doped carbon as superior microwave absorber. Nano Res. 2024 , in press, DOI: 10.1007/s12274-024-6859-z.
[48]

Zhou, Z. H.; Zhou, X. F.; Lan, D.; Zhang, Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small 2024, 20, 2305849.

[49]

Ma, G. J.; Lan, D.; Zhang, Y.; Sun, X. Y.; Jia, Z. R.; Wu, G. L.; Bu, G. X.; Yin, P. F. Microporous cobalt ferrite with bio-carbon loosely decorated to construct multi-functional composite for dye adsorption, anti-bacteria and electromagnetic protection. Small 2024, 20, 2404449.

[50]
Zhang, S. J.; Lan, D.; Zheng, J. J.; Chen, X. L.; Feng, A. L.; Pei, Y. X.; Cai, S. C.; Du, S. X.; Wu, G. L.; Jia, Z. R. Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 2024 , in press, DOI: 10.1007/s12613-024-2875-y.
[51]

Lian, Y. Y.; Lan, D.; Jiang, X. D.; Wang, L.; Yan, S.; Dong, Q. Z.; Jiang, Y.; Gu, J. W.; Gao, Z. G.; Wu, G. L. Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2T x MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interface Sci. 2024, 676, 217–226.

[52]

Wen, J. H.; Lan, D.; Wang, Y. Q.; Ren, L .G.; Feng, A. L.; Jia, Z. R.; Wu, G. L. Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment. Int. J. Miner. Metall. Mater. 2024, 31, 1701–1712.

[53]

Chen, X. L.; Shi, T.; Zhong, K. L.; Wu, G. L.; Lu, Y. Capacitive behavior of MoS2 decorated with FeS2@carbon nanospheres. Chem. Eng. J. 2020, 379, 122240.

[54]

Yin, P. F.; Lan, D.; Lu, C. F.; Jia, Z. R.; Feng, A. L.; Liu, P. B.; Shi, X. T.; Guo, H.; Wu, G. L.; Wang, J. Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection. J. Mater. Sci. Technol. 2025, 204, 204–223.

[55]

Dong, Y. H.; Lan, D.; Xu, S.; Gu, J. W.; Jia, Z. R.; Wu, G. L. Controllable fiberization engineering of cobalt anchored mesoporous hollow carbon spheres for positive feedback to electromagnetic wave absorption. Carbon 2024, 228, 119339.

[56]

Cao, X. L.; Lan, D.; Zhang, Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 187.

[57]

Hao, Z. W.; Zhou, J.; Lin, S. N.; Lan, D.; Li, H. Y.; Wang, H.; Liu, D.; Gu, J. W.; Wang, X. B.; Wu, G. L. Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 2024, 228, 119323.

[58]

Wu, N. N.; Zhao, B. B.; Lian, Y. Y.; Liu, S. S.; Xian, Y.; Gu, J. W.; Wu, G. L. Metal organic frameworks derived Ni x Se y @NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 2024, 226, 119215.

[59]

Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 2023, 651, 494–503.

[60]

Chen, X. L.; Lan, D.; Zhou, L. T.; Zeng, Z.; Liu, Y. K.; Du, S. X.; Zou, Z. Y.; Wu, G. L. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int. 2024, 50, 24549–24557.

[61]
Xie, X. B.; Wang, H. S.; Kimura, H.; Ni, C.; Du, W.; Wu, G. L. NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 2024 , in press, DOI: 10.1007/s12613-024-2880-1.
[62]

Li, J. J.; Lan, D.; Cheng, Y. H.; Jia, Z. R.; Liu, P. B.; Shi, X. T.; Guo, H.; Feng, A. L.; Feng, X.; Wu, G. L. et al. Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: An effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol. 2024, 196, 60–70.

[63]

Gao, Z. G.; Lan, D.; Ren, X. Y.; Jia, Z. R.; Wu, G. L. Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites. Compos. Commun. 2024, 48, 101922.

[64]

Zhou, J. X.; Huang, X. M.; Lan, D.; Cheng, Y. H.; Xue, F. Y.; Jia, C. Y.; Wu, G. L.; Jia, Z. R. Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization. Nano Res. 2024, 17, 2050–2060.

[65]

Shen, Z. Y.; Lan, D.; Cong, Y.; Lian, Y. Y.; Wu, N. N.; Jia, Z. R. Tailored heterogeneous interface based on porous hollow In–Co–C nanorods to construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 2024, 181, 128–137.

[66]

Qiao, J.; Song, Q. H.; Zhang, X.; Zhao, S. Y.; Liu, J. R.; Nyström, G.; Zeng, Z. H. Enhancing interface connectivity for multifunctional magnetic carbon aerogels: An in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Adv. Sci . 2024, 11, 2400403.

[67]

Zhang, Q. L.; Lan, D.; Deng, S. L.; Gu, J. W.; Wang, Y. Q.; Ren, J. W.; Wu, G. L.; Jia, Z. R. Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption. Carbon 2024, 226, 119233.

[68]

Lan, D.; Li, H. F.; Wang, M.; Ren, Y. J.; Zhang, J.; Zhang, M. Q.; Ouyang, L. X.; Tang, J.; Wang, Y. Y. Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 2024, 171, 112630.

[69]

Zhang, S. J.; Lan, D.; Chen, X. L.; Gu, Y. Y.; Ren, J. W.; Du, S. X.; Cai, S. C.; Zhao, X. M.; Zhao, Z. W.; Wu, G. L. Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Res. 2024, 17, 1952–1983.

[70]

Chen, X. L.; Zhang, F.; Lan, D.; Zhang, S. J.; Du, S. X.; Zhao, Z. W.; Ji, G. B.; Wu, G. L. State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source. Adv. Compos. Hybrid Mater. 2023, 6, 220.

[71]

Chen, S.; Meng, Y. B.; Wang, X. L.; Liu, D.; Meng, X. X.; Wang, X. B.; Wu, G. L. Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance. Carbon 2024, 218, 118698.

[72]

Hou, T. Q.; Wang, J. W.; Zheng, T. T.; Liu, Y.; Wu, G. L.; Yin, P. F. Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small 2023, 19, 2303463.

[73]

Jiang, R.; Wang, Y. Q.; Wang, J. Y.; He, Q. C.; Wu, G. L. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption. J. Colloid Interface Sci. 2023, 648, 25–36.

[74]

Wang, J. Y.; Wang, Y. Q.; Jiang, R.; Chen, S. S.; He, Q. C.; Wu, G. L. Self-assembly of submillimeter porous structure on metal-organic framework to construct heterogeneous interface for controlling microwave absorption. Mater. Today Phys. 2023, 35, 101126.

[75]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[76]

Zhang, H. X.; Sun, K. G.; Sun, K. K.; Chen, L.; Wu, G. L. Core-shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

[77]

Zhang, S. J.; Gao, Z. G.; Sun, Z. B.; Cheng, B.; Zhao, Z. W.; Jia, Y. C.; Wu, G. L. Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces. Appl. Surf. Sci. 2023, 611, 155707.

[78]

Zhang, S. J.; Pei, Y. X.; Zhao, Z. W.; Guan, C. L.; Wu, G. L. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2023, 630, 453–464.

[79]

Zeng, J. Q.; Qi, P. F.; Wang, Y.; Liu, Y. H.; Sui, K. Y. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal J. Hazard. Mater. 2021, 410, 124633.

[80]

Ren, X. Y.; Gao, Z. G.; Wu, G. L. Tunable Nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos. Commun. 2022, 35, 101292.

[81]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[82]

Song, Y. H.; Liu, X. H.; Gao, Z. G.; Wang, Z. D.; Hu, Y. H.; Yang, K.; Zhao, Z. H.; Lan, D.; Wu, G. L. Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 620, 263–272.

[83]

Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

[84]

Lv, H. L.; Zhou, X. D.; Wu, G. L.; Kara, U. I.; Wang, X. G. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A. 2021, 9, 19710–19718.

[85]

Zhang, S. J.; Cheng, B.; Gao, Z. G.; Lan, D.; Zhao, Z. W.; Wei, F. C.; Zhu, Q. S.; Lu, X. P.; Wu, G. L. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects. J. Alloys Compd. 2022, 893, 162343.

[86]

Gao, Z. G.; Song, Y. H.; Zhang, S. J.; Lan, D.; Zhao, Z. H.; Wang, Z. J.; Zang, D. Y.; Wu, G. L.; Wu, H. J. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J. Colloid Interface Sci. 2021, 600, 288–298.

[87]

Chen, X. L.; Wang, Y.; Liu, H. L.; Jin, S.; Wu, G. L. Interconnected magnetic carbon@Ni x Co1– x Fe2O4 nanospheres with core-shell structure: An efficient and thin electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 606, 526–536.

[88]

Tong, Z. Y.; Liao, Z. J.; Liu, Y. Y.; Ma, M. L.; Bi, Y. X.; Huang, W. B.; Ma, Y.; Qiao, M. T.; Wu, G. L. Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654.

[89]

Wang, C. X.; Wang, B. B.; Cao, X.; Zhao, J. W.; Chen, L.; Shan, L. G.; Wang, H. N.; Wu, G. L. 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B: Eng. 2021, 205, 108529.

[90]

Chai, L.; Wang, Y. Q.; Zhou, N. F.; Du, Y.; Zeng, X. D.; Zhou, S. Y.; He, Q. C.; Wu, G. L. In- situ growth of core-shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interface Sci. 2021, 581, 475–484.

[91]

Ma, M. L.; Li, W. T.; Tong, Z. Y.; Ma, Y.; Bi, Y. X.; Liao, Z. J.; Zhou, J.; Wu, G. L.; Li, M. X.; Yue, J. W. et al. NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J. Colloid Interface Sci. 2020, 578, 58–68.

[92]

Chen, X. L.; Wang, W.; Shi, T.; Wu, G. L.; Lu, Y. One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon 2020, 163, 202–212.

[93]

Chen, X. L.; Shi, T.; Wu, G. L.; Lu, Y. Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J. Colloid Interface Sci. 2020, 572, 227–235.

[94]

Qin, M.; Lan, D.; Wu, G. L.; Qiao, X. G.; Wu, H. J. Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption. Appl. Surf. Sci. 2020, 504, 144480.

[95]

Wu, H. J.; Zhao, Z. H.; Wu, G. L. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci. 2020, 566, 21–32.

[96]

Liu, J. L.; Liang, H. S.; Zhang, Y.; Wu, G. L.; Wu, H. J. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B: Eng. 2019, 176, 107240.

[97]

Wu, G. L.; Zhang, H. X.; Luo, X. X.; Yang, L. J.; Lv, H. L. Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 2019, 536, 548–555.

[98]

Lan, D.; Qin, M.; Liu, J. L.; Wu, G. L.; Zhang, Y.; Wu, H. J. Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 2020, 382, 122797.

[99]

Fan, X. M.; Yuan, R. Z.; Li, X.; Xu, H. L.; Kong, L.; Wu, G. L.; Zhang, L. T.; Cheng, L. F. RGO-supported core-shell SiO2@SiO2/carbon microsphere with adjustable microwave absorption properties. Ceram. Int. 2020, 46, 14985–14993.

[100]

Chen, X. L.; Zhong, K. L.; Shi, T.; Meng, X. L.; Wu, G. L.; Lu, Y. Urchin-like polyaniline/magnetic carbon sphere hybrid with excellent electromagnetic wave absorption performance. Synth. Met. 2019, 248, 59–67.

[101]

Wang, Y.; Gao, X.; Zhang, L. J.; Wu, X. M.; Wang, Q. G.; Luo, C. Y.; Wu, G. L. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl. Surf. Sci. 2019, 480, 830–838.

[102]

Wang, Y.; Gao, X.; Lin, C. H.; Shi, L. Y.; Li, X. H.; Wu, G. L. Metal organic frameworks-derived Fe–Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 2019, 785, 765–773.

[103]

Zhai, N. X.; Luo, J. H.; Mei, J.; Wu, Y. H.; Shu, P. C.; Yan, W. X.; Li, X. P. Interface engineering of heterogeneous NiSe2-CoSe2@C@MoSe2 for high-efficient electromagnetic wave absorption. Adv. Funct. Mater. 2024, 34, 2312237.

[104]

Li, X. P.; Luo, J. H.; Wang, Q. B.; Wu, Y. H.; Dai, Z. Y.; Xie, Y. Polydopamine-derived nitrogen-doped carbon coupled with MoSe2 nanosheets composites toward high-efficiency electromagnetic wave absorption. Carbon 2024, 225, 119119.

[105]

Yan, W. X.; Luo, J. H.; Li, Y.; Liu, M. P.; Wu, Y. H.; Dai, Z. Y.; Li, X. C. Construction of CoO/Co9S8/NC composites with low-frequency and broadband electromagnetic wave absorption. Carbon 2024, 228, 119338.

[106]

Zhai, N. X.; Luo, J. H.; Xiao, M. W.; Zhang, Y. C.; Yan, W. X.; Xu, Y. In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption. Carbon 2023, 203, 416–425.

[107]

Zhai, N. X.; Luo, J. H.; Shu, P. C.; Mei, J.; Li, X. P.; Yan, W. X. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 10698–10706.

[108]

Luo, J. H.; Li, X. P.; Yan, W. X.; Shu, P. C.; Mei, J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon 2023, 205, 552–561.

[109]

Luo, J. H.; Yan, W. X.; Li, X. P.; Shu, P. C.; Mei, J.; Shi, Y. F. Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 207–217.

[110]

Ma, T. B.; Zhang, Y. L.; Ruan, K. P.; Guo, H.; He, M. K.; Shi, X. T.; Guo, Y. Q.; Kong, J.; Gu, J. W. Advances in 3D printing for polymer composites: A review. InfoMat 2024, 6, e12568.

[111]

Gong, K. J.; Peng, Y. M.; Liu, A.; Qi, S. H.; Qiu, H. Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A: Appl. Sci. Manuf. 2024, 176, 107857.

[112]

Zhang, F.; Li, N.; Shi, J. F.; Wang, Y. Y.; Yan, D. X.; Li, Z. M. Cation bimetallic MOF anchored carbon fiber for highly efficient microwave absorption. Small 2024, 20, 2312135.

[113]

Zhang, F.; Li, N.; Shi, J. F.; Xu, L.; Jia, L. C.; Wang, Y. Y.; Yan, D. X. Recent progress on carbon-based microwave absorption materials for multifunctional applications: A review. Compos. Part B: Eng. 2024, 283, 111646.

Nano Research
Cite this article:
Jia Z, Sun L, Gao Z, et al. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6939-0
Topics:
Part of a topical collection:

157

Views

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 16 July 2024
Revised: 01 August 2024
Accepted: 03 August 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return