AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains

Danli Hu1,2Desheng Liu1( )Yue Hu3Yixian Wang4Yaozhong Lu1Changcheng Bai1,2Khan Rajib Hossain1,2Pan Jiang1( )Xiaolong Wang1,2,4( )
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
Show Author Information

Graphical Abstract

A strong yet slippery polyvinyl alcohol/chitosan (PVA/CS) hydrogel with dual-physically crosslinked networks was fabricated by harnessing freeze-thawing, salting-out, annealing, and rehydration. The slippery PVA/CS hydrogels simultaneously achieve high load-bearing, low-friction, and abrasion resistance, which is able to serve as a potential alternative to soft tissue load-bearing, such as meniscus, knee pads, joint prostheses, and articular cartilage.

Abstract

Hydrogel, as one of potential soft materials for articular cartilage, has encountered pressing obstacles, such as insufficient mechanical properties, poor lubrication, and easy to wear. To tackle these, we propose a strong yet slippery polyvinyl alcohol/chitosan (PVA/CS) hydrogel with dual-physically crosslinked networks by harnessing freeze-thawing, salting-out, annealing, and rehydration. High mechanical properties of PVA/CS hydrogel can be readily regulated by adjusting proportion of PVA/CS and annealing temperature. The optimized hydrogel exhibits high mechanical properties with tensile strength of ~ 19 MPa at strain of 550%, compression strength of ~ 11 MPa at small strain of 39%, and outstanding toughness and anti-fatigue owing to the robust physical interactions, including hydrogen bonds, crystallization, and ionic coordination. Moreover, the equilibrium hydrogel shows low friction coefficient of ~ 0.05 against Al2O3 ball under the condition of 30 N, 1 Hz, with water as the tribological medium, which is close to the lubrication performance of native cartilage. And meanwhile, the proposed cartilage-like slippery hydrogel displays stable long-term lubrication performance for 1 × 105 reciprocating cycles without destructive wear and structure damage. It is therefore believed that the biocompatible cartilage-like slippery hydrogel opens innovative scenarios for developing cartilage-mimicking water-lubricated coating and biomedical implants with satisfactory load-bearing and lubrication performance.

Electronic Supplementary Material

Download File(s)
6968_ESM.pdf (2.8 MB)

References

[1]

Brand, R. A. Joint contact stress: A reasonable surrogate for biological processes. Iowa Orthop. J. 2005, 25, 82–94.

[2]

Li, F.; Wang, A. M.; Wang, C. T. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage. J. Mater. Sci. Mater. Med. 2016, 27, 87.

[3]

Merkher, Y.; Sivan, S.; Etsion, I.; Maroudas, A.; Halperin, G.; Yosef, A. A rational human joint friction test using a human cartilage-on-cartilage arrangement. Tribol. Lett. 2006, 22, 29–36.

[4]

Walker, P. S.; Dowson, D.; Longfield, M. D.; Wright, A. V. “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 1968, 27, 512–520.

[5]

Moore, A. C.; Burris, D. L. Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthritis Cartilage 2017, 25, 99–107.

[6]

Huey, D. J.; Hu, J. C.; Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 2012, 338, 917–921.

[7]

Yilmaz, E. The evaluation of the effectiveness of intra-articular steroid, tenoxicam, and combined steroid-tenoxicam injections in the treatment of patients with knee osteoarthritis. Clin. Rheumatol. 2019, 38, 3243–3252.

[8]

Qiu, W. J.; Zhao, W. W.; Zhang, L. D.; Wang, H. M.; Li, N. Y.; Chen, K. X.; Zhang, H. Y.; Wang, Y. G. A solid-liquid composite lubricating “nano-snowboard” for long-acting treatment of osteoarthritis. Adv. Funct. Mater. 2022, 32, 2208189.

[9]

Richter, D. L.; Schenck, R. C. Jr. ; Wascher, D. C.; Treme, G. Knee articular cartilage repair and restoration techniques: A review of the literature. Sports Health 2016, 8, 153–160.

[10]

Mangaleshkar, S. M.; Prasad, P. S. V.; Chugh, S.; Thomas, A. P. Staged bilateral total knee replacement-a safer approach in older patients. Knee 2001, 8, 207–211.

[11]

Zhao, J. C.; Tong, H. Y.; Kirillova, A.; Koshut, W. J.; Malek, A.; Brigham, N. C.; Becker, M. L.; Gall, K.; Wiley, B. J. A synthetic hydrogel composite with a strength and wear resistance greater than cartilage. Adv. Funct. Mater. 2022, 32, 2205662.

[12]

Benitez-Duif, P. A.; Breisch, M.; Kurka, D.; Edel, K.; Gökcay, S.; Stangier, D.; Tillmann, W.; Hijazi, M.; Tiller, J. C. Ultrastrong poly(2-oxazoline)/poly(acrylic acid) double-network hydrogels with cartilage-like mechanical properties. Adv. Funct. Mater. 2022, 32, 2204837.

[13]

Luo, C. H.; Guo, A. D.; Zhao, Y. F.; Sun, X. X. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr. Polym. 2022, 286, 119268.

[14]

Yang, F. C.; Zhao, J. C.; Koshut, W. J.; Watt, J.; Riboh, J. C.; Gall, K.; Wiley, B. J. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 2020, 30, 2003451.

[15]

Chen, Q.; Zhang, X. Y.; Chen, K.; Feng, C. N.; Wang, D. G.; Qi, J. W.; Li, X. W.; Zhao, X. D.; Chai, Z. M.; Zhang, D. K. Bilayer hydrogels with low friction and high load-bearing capacity by mimicking the oriented hierarchical structure of cartilage. ACS Appl. Mater. Interfaces 2022, 14, 52347–52358.

[16]

Li, Y. B.; Zhou, M.; Zheng, W. Z.; Yang, J. Y.; Jiang, N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen. Biomater. 2023, 10, rbac091.

[17]

Lin, P.; Zhang, R.; Wang, X. L.; Cai, M. R.; Yang, J.; Yu, B.; Zhou, F. Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance. ACS Macro Lett. 2016, 5, 1191–1195.

[18]

Ma, S. H.; Scaraggi, M.; Wang, D. A.; Wang, X. L.; Liang, Y. M.; Liu, W. M.; Dini, D.; Zhou, F. Nanoporous substrate-infiltrated hydrogels: A bioinspired regenerable surface for high load bearing and tunable friction. Adv. Funct. Mater. 2015, 25, 7366–7374.

[19]

Zhang, Y. L.; Xu, R. N.; Zhao, W. Y.; Zhao, X. D.; Zhang, L. Q.; Wang, R.; Ma, Z. F.; Sheng, W. B.; Yu, B.; Ma, S. H. et al. Successive redox-reaction-triggered interface radical polymerization for growing hydrogel coatings on diverse substrates. Angew. Chem., Int. Ed. 2022, 61, e202209741.

[20]

Fan, C. C.; Xu, Z. Y.; Wu, T. L.; Cui, C. Y.; Liu, Y.; Liu, B.; Yang, J. H.; Liu, W. G. 3D printing of lubricative stiff supramolecular polymer hydrogels for meniscus replacement. Biomater. Sci, 2021, 9, 5116–5126,

[21]

Hua, M. T.; Wu, S. W.; Ma, Y. F.; Zhao, Y. S.; Chen, Z. L.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X. Y.; He, X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.

[22]

Jiang, P.; Lin, P.; Yang, C.; Qin, H. L.; Wang, X. L.; Zhou, F. 3D printing of dual-physical cross-linking hydrogel with ultrahigh strength and toughness. Chem. Mater. 2020, 32, 9983–9995.

[23]

Chen, H.; Yang, G. Z.; Sun, Y. Z.; Xu, Y. C.; Liu, M. J. Continuous preparation of strong and tough PVA nanocomposite fibers by mechanical stretching-assisted salting-out treatment. Nano Res. 2024, 17, 3156–3163.

[24]

Oliveira, A. S.; Seidi, O.; Ribeiro, N.; Colaço, R.; Serro, A. P. Tribomechanical comparison between PVA hydrogels obtained using different processing conditions and human cartilage. Materials 2019, 12, 3413.

[25]

Zulkiflee, I.; Fauzi, M. B. Gelatin-polyvinyl alcohol film for tissue engineering: A concise review. Biomedicines 2021, 9, 979.

[26]

Jafari, A.; Vahid Niknezhad, S.; Kaviani, M.; Saleh, W.; Wong, N.; Van Vliet, P. P.; Moraes, C.; Ajji, A.; Kadem, L.; Azarpira, N. et al. Formulation and evaluation of PVA/gelatin/carrageenan inks for 3D printing and development of tissue-engineered heart valves. Adv. Funct. Mater. 2024, 34, 2305188.

[27]

Palanichamy, K.; Anandan, M.; Sridhar, J.; Natarajan, V.; Dhandapani, A. PVA and PMMA nano-composites: A review on strategies, applications and future prospects. Mater. Res. Express 2023, 10, 022002.

[28]

Radoor, S.; Kandel, D. R.; Park, K.; Jayakumar, A.; Karayil, J.; Lee, J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. Chemosphere 2024, 350, 140990.

[29]

Ji, Y. S.; Liang, N.; Xu, J.; Zuo, D. Y.; Chen, D. Z.; Zhang, H. W. Cellulose and poly(vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors. Cellulose 2019, 26, 1055–1065.

[30]

Wang, Y. Q.; Zhang, Y.; Ren, P.; Yu, S. M.; Cui, P.; Nielsen, C. B.; Abrahams, I.; Briscoe, J.; Lu, Y. Versatile and recyclable double-network PVA/cellulose hydrogels for strain sensors and triboelectric nanogenerators under harsh conditions. Nano Energy 2024, 125, 109599.

[31]
Liu, R. R.; Mao, L. B.; Yu, S. H. Strong and tough chitin hydrogel constructed by dehydration and rehydration strategy. Nano Res., in press, DOI: 10.1007/s12274-024-6782-3.
[32]

Yang, Y. Y.; Wang, X.; Yang, F.; Shen, H.; Wu, D. C. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv. Mater. 2016, 28, 7178–7184.

[33]

Shi, Y.; Xiong, D. S.; Zhang, J. F. Effect of irradiation dose on mechanical and biotribological properties of PVA/PVP hydrogels as articular cartilage. Tribol. Int. 2014, 78, 60–67.

[34]

Wu, X. F.; Li, W.; Chen, K.; Zhang, D. K.; Xu, L. M.; Yang, X. H. A tough PVA/HA/COL composite hydrogel with simple process and excellent mechanical properties. Mater. Today Commun. 2019, 21, 100702.

[35]

Kanca, Y.; Milner, P.; Dini, D.; Amis, A. A. Tribological properties of PVA/PVP blend hydrogels against articular cartilage. J. Mech. Behav. Biomed. Mater. 2018, 78, 36–45.

[36]

Shi, Y.; Xiong, D. S.; Liu, Y. T.; Wang, N.; Zhao, X. D. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater. Sci. Eng. C 2016, 65, 172–180.

[37]

Liu, Y.; He, W. L.; Zhang, Z. T.; Lee, B. P. Recent developments in tough hydrogels for biomedical applications. Gels 2018, 4, 46.

[38]

Zhang, X. Y.; Lou, Z. C.; Yang, X. H.; Chen, Q.; Chen, K.; Feng, C. N.; Qi, J. W.; Luo, Y.; Zhang, D. K. Fabrication and characterization of a multilayer hydrogel as a candidate for artificial cartilage. ACS Appl. Polym. Mater. 2021, 3, 5039–5050.

[39]

Chen, S. J.; Tang, J. Y.; Feng, J. C. Robust hydrogel with significant swelling resistance via the synergy of hydrogen bond regulation and ionic cross-linking. ACS Appl. Polym. Mater. 2023, 5, 2695–2703.

[40]

Means, A. K.; Shrode, C. S.; Whitney, L. V.; Ehrhardt, D. A.; Grunlan, M. A. Double network hydrogels that mimic the modulus, strength, and lubricity of cartilage. Biomacromolecules 2019, 20, 2034–2042.

[41]

Yang, F. C.; Tadepalli, V.; Wiley, B. J. 3D printing of a double network hydrogel with a compression strength and elastic modulus greater than those of cartilage. ACS Biomater. Sci. Eng. 2017, 3, 863–869.

[42]

Zhang, H. J.; Sun, T. L.; Zhang, A. K.; Ikura, Y.; Nakajima, T.; Nonoyama, T.; Kurokawa, T.; Ito, O.; Ishitobi, H.; Gong, J. P. Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv. Mater. 2016, 28, 4884–4890.

[43]

Bai, Z. X.; Jia, K.; Liu, C. C.; Wang, L. L.; Lin, G.; Huang, Y. M.; Liu, S. N.; Liu, X. B. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv. Funct. Mater. 2021, 31, 2104701.

[44]

Tang, N.; Jiang, Y. J.; Wei, K. L.; Zheng, Z. R.; Zhang, H.; Hu, J. Evolutionary reinforcement of polymer networks: A stepwise-enhanced strategy for ultrarobust eutectogels. Adv. Mater. 2024, 36, 2309576.

[45]

Liu, D. S.; Cao, Y. F.; Jiang, P.; Wang, Y. X.; Lu, Y. Z.; Ji, Z. Y.; Wang, X. L.; Liu, W. M. Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 2023, 19, 2206819.

[46]

Hou, J. L.; Ren, X. Y.; Guan, S.; Duan, L. J.; Gao, G. H.; Kuai, Y.; Zhang, H. X. Rapidly recoverable, anti-fatigue, super-tough double-network hydrogels reinforced by macromolecular microspheres. Soft Matter 2017, 13, 1357–1363.

[47]

Lin, P.; Ma, S. H.; Wang, X. L.; Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 2015, 27, 2054–2059.

[48]

Cheng, B.; Li, C. P.; Zhang, B.; Liu, J. P.; Lu, Z.; Zhang, P.; Wei, H. Q.; Yu, Y. Customizable low-friction tough hydrogels for potential cartilage tissue engineering by a rapid orthogonal photoreactive 3D-printing design. ACS Appl. Mater. Interfaces 2023, 15, 14826–14834.

[49]

Zhang, Y. L.; Zhao, W. Y.; Ma, S. H.; Liu, H.; Wang, X. W.; Zhao, X. D.; Yu, B.; Cai, M. R.; Zhou, F. Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin. Nat. Commun. 2022, 13, 377.

[50]

Milner, P. E.; Parkes, M.; Puetzer, J. L.; Chapman, R.; Stevens, M. M.; Cann, P.; Jeffers, J. R. T. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater. 2018, 65, 102–111.

[51]

Wang, Z. N.; Li, J. J.; Liu, Y. H.; Luo, J. B. Synthesis and characterizations of zwitterionic copolymer hydrogels with excellent lubrication behavior. Tribol. Int. 2020, 143, 106026.

[52]

Mu, R. J.; Yang, J. W.; Wang, Y. C.; Wang, Z. J.; Chen, P. J.; Sheng, H.; Suo, Z. G. Polymer-filled macroporous hydrogel for low friction. Extreme Mech. Lett. 2020, 38, 100742.

[53]

Liu, H.; Zhao, W. Y.; Zhang, Y. L.; Zhao, X. D.; Ma, S. H.; Scaraggi, M.; Zhou, F. Robust super-lubricity for novel cartilage prototype inspired by scallion leaf architecture. Adv. Funct. Mater. 2024, 34, 2310271.

[54]

Zhang, R.; Lin, P.; Yang, W. F.; Cai, M. R.; Yu, B.; Zhou, F. Simultaneous superior lubrication and high load bearing by the dynamic weak interaction of a lubricant with mechanically strong bilayer porous hydrogels. Polym. Chem. 2017, 8, 7102–7107.

Nano Research
Pages 9784-9795
Cite this article:
Hu D, Liu D, Hu Y, et al. Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains. Nano Research, 2024, 17(11): 9784-9795. https://doi.org/10.1007/s12274-024-6968-8
Topics:

447

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 June 2024
Revised: 23 July 2024
Accepted: 13 August 2024
Published: 07 September 2024
© Tsinghua University Press 2024
Return