Hydrogel, as one of potential soft materials for articular cartilage, has encountered pressing obstacles, such as insufficient mechanical properties, poor lubrication, and easy to wear. To tackle these, we propose a strong yet slippery polyvinyl alcohol/chitosan (PVA/CS) hydrogel with dual-physically crosslinked networks by harnessing freeze-thawing, salting-out, annealing, and rehydration. High mechanical properties of PVA/CS hydrogel can be readily regulated by adjusting proportion of PVA/CS and annealing temperature. The optimized hydrogel exhibits high mechanical properties with tensile strength of ~ 19 MPa at strain of 550%, compression strength of ~ 11 MPa at small strain of 39%, and outstanding toughness and anti-fatigue owing to the robust physical interactions, including hydrogen bonds, crystallization, and ionic coordination. Moreover, the equilibrium hydrogel shows low friction coefficient of ~ 0.05 against Al2O3 ball under the condition of 30 N, 1 Hz, with water as the tribological medium, which is close to the lubrication performance of native cartilage. And meanwhile, the proposed cartilage-like slippery hydrogel displays stable long-term lubrication performance for 1 × 105 reciprocating cycles without destructive wear and structure damage. It is therefore believed that the biocompatible cartilage-like slippery hydrogel opens innovative scenarios for developing cartilage-mimicking water-lubricated coating and biomedical implants with satisfactory load-bearing and lubrication performance.
Brand, R. A. Joint contact stress: A reasonable surrogate for biological processes. Iowa Orthop. J. 2005, 25, 82–94.
Li, F.; Wang, A. M.; Wang, C. T. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage. J. Mater. Sci. Mater. Med. 2016, 27, 87.
Merkher, Y.; Sivan, S.; Etsion, I.; Maroudas, A.; Halperin, G.; Yosef, A. A rational human joint friction test using a human cartilage-on-cartilage arrangement. Tribol. Lett. 2006, 22, 29–36.
Walker, P. S.; Dowson, D.; Longfield, M. D.; Wright, A. V. “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 1968, 27, 512–520.
Moore, A. C.; Burris, D. L. Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthritis Cartilage 2017, 25, 99–107.
Huey, D. J.; Hu, J. C.; Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 2012, 338, 917–921.
Yilmaz, E. The evaluation of the effectiveness of intra-articular steroid, tenoxicam, and combined steroid-tenoxicam injections in the treatment of patients with knee osteoarthritis. Clin. Rheumatol. 2019, 38, 3243–3252.
Qiu, W. J.; Zhao, W. W.; Zhang, L. D.; Wang, H. M.; Li, N. Y.; Chen, K. X.; Zhang, H. Y.; Wang, Y. G. A solid-liquid composite lubricating “nano-snowboard” for long-acting treatment of osteoarthritis. Adv. Funct. Mater. 2022, 32, 2208189.
Richter, D. L.; Schenck, R. C. Jr. ; Wascher, D. C.; Treme, G. Knee articular cartilage repair and restoration techniques: A review of the literature. Sports Health 2016, 8, 153–160.
Mangaleshkar, S. M.; Prasad, P. S. V.; Chugh, S.; Thomas, A. P. Staged bilateral total knee replacement-a safer approach in older patients. Knee 2001, 8, 207–211.
Zhao, J. C.; Tong, H. Y.; Kirillova, A.; Koshut, W. J.; Malek, A.; Brigham, N. C.; Becker, M. L.; Gall, K.; Wiley, B. J. A synthetic hydrogel composite with a strength and wear resistance greater than cartilage. Adv. Funct. Mater. 2022, 32, 2205662.
Benitez-Duif, P. A.; Breisch, M.; Kurka, D.; Edel, K.; Gökcay, S.; Stangier, D.; Tillmann, W.; Hijazi, M.; Tiller, J. C. Ultrastrong poly(2-oxazoline)/poly(acrylic acid) double-network hydrogels with cartilage-like mechanical properties. Adv. Funct. Mater. 2022, 32, 2204837.
Luo, C. H.; Guo, A. D.; Zhao, Y. F.; Sun, X. X. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydr. Polym. 2022, 286, 119268.
Yang, F. C.; Zhao, J. C.; Koshut, W. J.; Watt, J.; Riboh, J. C.; Gall, K.; Wiley, B. J. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 2020, 30, 2003451.
Chen, Q.; Zhang, X. Y.; Chen, K.; Feng, C. N.; Wang, D. G.; Qi, J. W.; Li, X. W.; Zhao, X. D.; Chai, Z. M.; Zhang, D. K. Bilayer hydrogels with low friction and high load-bearing capacity by mimicking the oriented hierarchical structure of cartilage. ACS Appl. Mater. Interfaces 2022, 14, 52347–52358.
Li, Y. B.; Zhou, M.; Zheng, W. Z.; Yang, J. Y.; Jiang, N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen. Biomater. 2023, 10, rbac091.
Lin, P.; Zhang, R.; Wang, X. L.; Cai, M. R.; Yang, J.; Yu, B.; Zhou, F. Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance. ACS Macro Lett. 2016, 5, 1191–1195.
Ma, S. H.; Scaraggi, M.; Wang, D. A.; Wang, X. L.; Liang, Y. M.; Liu, W. M.; Dini, D.; Zhou, F. Nanoporous substrate-infiltrated hydrogels: A bioinspired regenerable surface for high load bearing and tunable friction. Adv. Funct. Mater. 2015, 25, 7366–7374.
Zhang, Y. L.; Xu, R. N.; Zhao, W. Y.; Zhao, X. D.; Zhang, L. Q.; Wang, R.; Ma, Z. F.; Sheng, W. B.; Yu, B.; Ma, S. H. et al. Successive redox-reaction-triggered interface radical polymerization for growing hydrogel coatings on diverse substrates. Angew. Chem., Int. Ed. 2022, 61, e202209741.
Fan, C. C.; Xu, Z. Y.; Wu, T. L.; Cui, C. Y.; Liu, Y.; Liu, B.; Yang, J. H.; Liu, W. G. 3D printing of lubricative stiff supramolecular polymer hydrogels for meniscus replacement. Biomater. Sci, 2021, 9, 5116–5126,
Hua, M. T.; Wu, S. W.; Ma, Y. F.; Zhao, Y. S.; Chen, Z. L.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X. Y.; He, X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.
Jiang, P.; Lin, P.; Yang, C.; Qin, H. L.; Wang, X. L.; Zhou, F. 3D printing of dual-physical cross-linking hydrogel with ultrahigh strength and toughness. Chem. Mater. 2020, 32, 9983–9995.
Chen, H.; Yang, G. Z.; Sun, Y. Z.; Xu, Y. C.; Liu, M. J. Continuous preparation of strong and tough PVA nanocomposite fibers by mechanical stretching-assisted salting-out treatment. Nano Res. 2024, 17, 3156–3163.
Oliveira, A. S.; Seidi, O.; Ribeiro, N.; Colaço, R.; Serro, A. P. Tribomechanical comparison between PVA hydrogels obtained using different processing conditions and human cartilage. Materials 2019, 12, 3413.
Zulkiflee, I.; Fauzi, M. B. Gelatin-polyvinyl alcohol film for tissue engineering: A concise review. Biomedicines 2021, 9, 979.
Jafari, A.; Vahid Niknezhad, S.; Kaviani, M.; Saleh, W.; Wong, N.; Van Vliet, P. P.; Moraes, C.; Ajji, A.; Kadem, L.; Azarpira, N. et al. Formulation and evaluation of PVA/gelatin/carrageenan inks for 3D printing and development of tissue-engineered heart valves. Adv. Funct. Mater. 2024, 34, 2305188.
Palanichamy, K.; Anandan, M.; Sridhar, J.; Natarajan, V.; Dhandapani, A. PVA and PMMA nano-composites: A review on strategies, applications and future prospects. Mater. Res. Express 2023, 10, 022002.
Radoor, S.; Kandel, D. R.; Park, K.; Jayakumar, A.; Karayil, J.; Lee, J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. Chemosphere 2024, 350, 140990.
Ji, Y. S.; Liang, N.; Xu, J.; Zuo, D. Y.; Chen, D. Z.; Zhang, H. W. Cellulose and poly(vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors. Cellulose 2019, 26, 1055–1065.
Wang, Y. Q.; Zhang, Y.; Ren, P.; Yu, S. M.; Cui, P.; Nielsen, C. B.; Abrahams, I.; Briscoe, J.; Lu, Y. Versatile and recyclable double-network PVA/cellulose hydrogels for strain sensors and triboelectric nanogenerators under harsh conditions. Nano Energy 2024, 125, 109599.
Yang, Y. Y.; Wang, X.; Yang, F.; Shen, H.; Wu, D. C. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv. Mater. 2016, 28, 7178–7184.
Shi, Y.; Xiong, D. S.; Zhang, J. F. Effect of irradiation dose on mechanical and biotribological properties of PVA/PVP hydrogels as articular cartilage. Tribol. Int. 2014, 78, 60–67.
Wu, X. F.; Li, W.; Chen, K.; Zhang, D. K.; Xu, L. M.; Yang, X. H. A tough PVA/HA/COL composite hydrogel with simple process and excellent mechanical properties. Mater. Today Commun. 2019, 21, 100702.
Kanca, Y.; Milner, P.; Dini, D.; Amis, A. A. Tribological properties of PVA/PVP blend hydrogels against articular cartilage. J. Mech. Behav. Biomed. Mater. 2018, 78, 36–45.
Shi, Y.; Xiong, D. S.; Liu, Y. T.; Wang, N.; Zhao, X. D. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution. Mater. Sci. Eng. C 2016, 65, 172–180.
Liu, Y.; He, W. L.; Zhang, Z. T.; Lee, B. P. Recent developments in tough hydrogels for biomedical applications. Gels 2018, 4, 46.
Zhang, X. Y.; Lou, Z. C.; Yang, X. H.; Chen, Q.; Chen, K.; Feng, C. N.; Qi, J. W.; Luo, Y.; Zhang, D. K. Fabrication and characterization of a multilayer hydrogel as a candidate for artificial cartilage. ACS Appl. Polym. Mater. 2021, 3, 5039–5050.
Chen, S. J.; Tang, J. Y.; Feng, J. C. Robust hydrogel with significant swelling resistance via the synergy of hydrogen bond regulation and ionic cross-linking. ACS Appl. Polym. Mater. 2023, 5, 2695–2703.
Means, A. K.; Shrode, C. S.; Whitney, L. V.; Ehrhardt, D. A.; Grunlan, M. A. Double network hydrogels that mimic the modulus, strength, and lubricity of cartilage. Biomacromolecules 2019, 20, 2034–2042.
Yang, F. C.; Tadepalli, V.; Wiley, B. J. 3D printing of a double network hydrogel with a compression strength and elastic modulus greater than those of cartilage. ACS Biomater. Sci. Eng. 2017, 3, 863–869.
Zhang, H. J.; Sun, T. L.; Zhang, A. K.; Ikura, Y.; Nakajima, T.; Nonoyama, T.; Kurokawa, T.; Ito, O.; Ishitobi, H.; Gong, J. P. Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv. Mater. 2016, 28, 4884–4890.
Bai, Z. X.; Jia, K.; Liu, C. C.; Wang, L. L.; Lin, G.; Huang, Y. M.; Liu, S. N.; Liu, X. B. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv. Funct. Mater. 2021, 31, 2104701.
Tang, N.; Jiang, Y. J.; Wei, K. L.; Zheng, Z. R.; Zhang, H.; Hu, J. Evolutionary reinforcement of polymer networks: A stepwise-enhanced strategy for ultrarobust eutectogels. Adv. Mater. 2024, 36, 2309576.
Liu, D. S.; Cao, Y. F.; Jiang, P.; Wang, Y. X.; Lu, Y. Z.; Ji, Z. Y.; Wang, X. L.; Liu, W. M. Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 2023, 19, 2206819.
Hou, J. L.; Ren, X. Y.; Guan, S.; Duan, L. J.; Gao, G. H.; Kuai, Y.; Zhang, H. X. Rapidly recoverable, anti-fatigue, super-tough double-network hydrogels reinforced by macromolecular microspheres. Soft Matter 2017, 13, 1357–1363.
Lin, P.; Ma, S. H.; Wang, X. L.; Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 2015, 27, 2054–2059.
Cheng, B.; Li, C. P.; Zhang, B.; Liu, J. P.; Lu, Z.; Zhang, P.; Wei, H. Q.; Yu, Y. Customizable low-friction tough hydrogels for potential cartilage tissue engineering by a rapid orthogonal photoreactive 3D-printing design. ACS Appl. Mater. Interfaces 2023, 15, 14826–14834.
Zhang, Y. L.; Zhao, W. Y.; Ma, S. H.; Liu, H.; Wang, X. W.; Zhao, X. D.; Yu, B.; Cai, M. R.; Zhou, F. Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin. Nat. Commun. 2022, 13, 377.
Milner, P. E.; Parkes, M.; Puetzer, J. L.; Chapman, R.; Stevens, M. M.; Cann, P.; Jeffers, J. R. T. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater. 2018, 65, 102–111.
Wang, Z. N.; Li, J. J.; Liu, Y. H.; Luo, J. B. Synthesis and characterizations of zwitterionic copolymer hydrogels with excellent lubrication behavior. Tribol. Int. 2020, 143, 106026.
Mu, R. J.; Yang, J. W.; Wang, Y. C.; Wang, Z. J.; Chen, P. J.; Sheng, H.; Suo, Z. G. Polymer-filled macroporous hydrogel for low friction. Extreme Mech. Lett. 2020, 38, 100742.
Liu, H.; Zhao, W. Y.; Zhang, Y. L.; Zhao, X. D.; Ma, S. H.; Scaraggi, M.; Zhou, F. Robust super-lubricity for novel cartilage prototype inspired by scallion leaf architecture. Adv. Funct. Mater. 2024, 34, 2310271.
Zhang, R.; Lin, P.; Yang, W. F.; Cai, M. R.; Yu, B.; Zhou, F. Simultaneous superior lubrication and high load bearing by the dynamic weak interaction of a lubricant with mechanically strong bilayer porous hydrogels. Polym. Chem. 2017, 8, 7102–7107.