Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate AunSm nanoclusters of different sizes by thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster. These clusters, deposited on activated carbon, exhibit excellent catalytic performance in the hydrochlorination of acetylene. In-situ ultraviolet laser dissociation high-resolution mass spectrometry of the parent cluster in the presence of acetylene revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in the hydrochlorination. Systematic density functional theory calculations of the reaction pathways on the differently-sized clusters provide deeper insight into the cluster size dependence of the adsorption energies of the reactants and afforded a scaling relationship between the adsorption energy of acetylene and the co-adsorption energies of the reactants (C2H2 and HCl), which could enable a qualitative prediction of the optimal AunSm cluster for the hydrochlorination of acetylene.
Zhou, K.; Jia, J. C.; Li, C. H.; Xu, H.; Zhou, J.; Luo, G. H.; Wei, F. A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes. Green Chem. 2015, 17, 356–364.
Lu, M.; Yin, X.; Wang, Q. Q.; Zhang, X. C.; Zhu, M. Y.; Dai, B. Application of SnO x /AC catalyst for the acetylene hydrochlorination. Nano Res. 2023, 16, 6577–6583.
Trotuş, I. T.; Zimmermann, T.; Schüth, F. Catalytic reactions of acetylene: A feedstock for the chemical industry revisited. Chem. Rev. 2014, 114, 1761–1782.
Bao, Y. X.; Zheng, X. H.; Cao, J. L.; Li, S.; Tuo, Y. X.; Feng, X.; Zhu, M. Y.; Dai, B.; Yang, C. H.; Chen, D. Free radicals induced ultra-rapid synthesis of N-doped carbon sphere catalyst with boosted pyrrolic N active sites for efficient acetylene hydrochlorination. Nano Res. 2023, 16, 6178–6186.
Zhu, M. Y.; Wang, Q. Q.; Chen, K.; Wang, Y.; Huang, C. F.; Dai, H.; Yu, F.; Kang, L. H.; Dai, B. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination. ACS Catal. 2015, 5, 5306–5316.
Hutchings, G. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295.
Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 355, 1399–1403.
Johnston, P.; Carthey, N.; Hutchings, G. J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 2015, 137, 14548–14557.
Zhou, K.; Wang, W.; Zhao, Z.; Luo, G. H.; Miller, J. T.; Wong, M. S.; Wei, F. Synergistic gold-bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer. ACS Catal. 2014, 4, 3112–3116.
Hutchings, G. J.; Grady, D. T. Effect of drying conditions on carbon supported mercuric chloride catalysts. Appl. Catal. 1985, 16, 411–415.
Chao, S. L.; Guan, Q. X.; Li, W. Study of the active site for acetylene hydrochlorination in AuCl3/C catalysts. J. Catal. 2015, 330, 273–279.
Zhang, H. Y.; Dai, B.; Li, W.; Wang, X. G.; Zhang, J. L.; Zhu, M. Y.; Gu, J. J. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co(III)-Cu(II) catalysts. J. Catal. 2014, 316, 141–148.
Nkosi, B.; Adams, M. D.; Coville, N. J.; Hutchings, G. J. Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst reactivation. J. Catal. 1991, 128, 378–386.
Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Industrial applications of gold catalysis. Angew. Chem., Int. Ed. 2016, 55, 14210–14217.
Ferraro, F.; Pérez-Torres, J. F.; Hadad, C. Z. Selective catalytic activation of acetylene by a neutral gold cluster of experimentally known gas-phase geometry. J. Phys. Chem. C 2015, 119, 7755–7764.
Pichugina, D. A.; Nikolaev, S. A.; Mukhamedzyanova, D. F.; Kuz’menko, N. E. Quantum-chemical modeling of ethylene and acetylene adsorption on gold clusters. Russian J. Phys. Chem. A 2014, 88, 959–964.
Gautam, S.; De Sarkar, A. A systematic investigation of acetylene activation and hydracyanation of the activated acetylene on Au n ( n = 3–10) clusters via density functional theory. Phys. Chem. Chem. Phys. 2016, 18, 13830–13843.
Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.
Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.
Shi, Q. Q.; Zhang, X. Y.; Li, Z. W.; Raza, A.; Li, G. Plasmonic Au nanoparticle of a Au/TiO2–C3N4 heterojunction boosts up photooxidation of benzyl alcohol using LED light. ACS Appl. Mater. Interfaces 2023, 15, 30161–30169.
Hu, J. Y.; Yang, Q. W.; Yang, L. F.; Zhang, Z. G.; Su, B. G.; Bao, Z. B.; Ren, Q. L.; Xing, H. B.; Dai, S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catal. 2015, 5, 6724–6731.
Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.
Li, G.; Jin, R. C. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354.
Chen, Y. D.; Liu, C.; Abroshan, H.; Li, Z. M.; Wang, J.; Li, G.; Haruta, M. Phosphine/phenylacetylide-ligated Au clusters for multicomponent coupling reactions. J. Catal. 2016, 340, 287–294.
Chen, H. J.; Li, Z. M.; Qin, Z. X.; Kim, H. J.; Abroshan, H.; Li, G. Silica-encapsulated gold nanoclusters for efficient acetylene hydrogenation to ethylene. ACS Appl. Nano Mater. 2019, 2, 2999–3006.
Liu, C.; Yan, C. Y.; Lin, J. Z.; Yu, C. L.; Huang, J. H.; Li, G. One-pot synthesis of Au144(SCH2Ph)60 nanoclusters and their catalytic application. J. Mater. Chem. A 2015, 3, 20167–20173.
Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X. G.; Reuter, K.; Scheffler, M. Ab initio molecular simulations with numeric atom-centered orbitals. Computer. Phys. Commun. 2009, 180, 2175–2196.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.
Li, Z. M.; Li, W. L.; Abroshan, H.; Ge, Q. J.; Li, G.; Jin, R. C. Dual effects of water vapor on ceria-supported gold clusters. Nanoscale 2018, 10, 6558–6565.
Hong, G. T.; Tian, X. H.; Jiang, B. B.; Liao, Z. W.; Wang, J. D.; Yang, Y. R.; Zheng, J. Improvement of performance of a Au-Cu/AC catalyst using thiol for acetylene hydrochlorination reaction. RSC Adv. 2016, 6, 3806–3814.
Odio, O. F.; Lartundo-Rojas, L.; Santiago-Jacinto, P.; Martínez, R.; Reguera, E. Sorption of gold by naked and thiol-capped magnetite nanoparticles: An XPS approach. J. Phys. Chem. C 2014, 118, 2776–2791.
Zhao, J.; Wang, B. L.; Xu, X. L.; Yu, Y.; Di, S. X.; Xu, H.; Zhai, Y. Y.; He, H. H.; Guo, L. L.; Pan, Z. Y. et al. Alternative solvent to aqua regia to activate Au/AC catalysts for the hydrochlorination of acetylene. J. Catal. 2017, 350, 149–158.
Conte, M.; Davies, C. J.; Morgan, D. J.; Davies, T. E.; Elias, D. J.; Carley, A. F.; Johnston, P.; Hutchings, G. J. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. J. Catal. 2013, 297, 128–136.
Zhang, J. J.; Wang, H. D.; Zhang, Y. F.; Li, Z. W.; Yang, D. Y.; Zhang, D. H.; Tsukuda, T.; Li, G. A revealing insight into gold cluster photocatalysts: Visible versus (vacuum) ultraviolet light. J. Phys. Chem. Lett. 2023, 14, 4179–4184.
Liu, Z. Y.; Li, Z. M.; Li, G. N.; Wang, Z. P.; Lai, C.; Wang, X. L.; Pidko, E. A.; Xiao, C. L.; Wang, F. J.; Li, G. et al. Single-atom Pt+ derived from the laser dissociation of a platinum cluster: Insights into nonoxidative alkane conversion. J. Phys. Chem. Lett. 2020, 11, 5987–5991.
Taketoshi, A.; Haruta, M. Size- and structure-specificity in catalysis by gold clusters. Chem. Lett. 2014, 43, 380–387.
Zhang, Y. F.; Li, Z. W.; Zhang, J. J.; Xu, L. L.; Han, Z. K.; Baiker, A.; Li, G. Nanostructured Ni-MoC x : An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res. 2023, 16, 8919–8928.
Gu, X. R.; Guo, S.; Zhang, Y. F.; Zhang, J. J.; Sanwal, P.; Xu, L. L.; Zhao, Z.; Jin, R. C.; Li, G. Boosting oxygen evolution performance over synergistic tiara nickel clusters and thin layered double hydroxides. Nano Res. Energy 2024, 3, e9120134.