Sort:
Research Article Online First
Size hierarchy of gold clusters in nanogold-catalyzed acetylene hydrochlorination
Nano Research
Published: 09 September 2024
Abstract PDF (1.7 MB) Collect
Downloads:11

Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate AunSm nanoclusters of different sizes by thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster. These clusters, deposited on activated carbon, exhibit excellent catalytic performance in the hydrochlorination of acetylene. In-situ ultraviolet laser dissociation high-resolution mass spectrometry of the parent cluster in the presence of acetylene revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in the hydrochlorination. Systematic density functional theory calculations of the reaction pathways on the differently-sized clusters provide deeper insight into the cluster size dependence of the adsorption energies of the reactants and afforded a scaling relationship between the adsorption energy of acetylene and the co-adsorption energies of the reactants (C2H2 and HCl), which could enable a qualitative prediction of the optimal AunSm cluster for the hydrochlorination of acetylene.

Open Access Online First
Boosting oxygen evolution performance over synergistic tiara nickel clusters and thin layered double hydroxides
Nano Research Energy
Published: 13 August 2024
Abstract PDF (2.2 MB) Collect
Downloads:170

The two-dimensional layered double hydroxides (LDHs) and zero-dimensional metal clusters have emerged as promising nanomaterials in the field of sustainable water oxidation, which can also facilitate joint experimental and computational studies. In this study, the synthesis of Ni6@LDH composites, comprising atomically precise Ni6(MPA)12 (MPA: mercaptopropionic acid) clusters embedded into LDH nanosheets via electrostatic interaction, represents a significant advancement in the development of nanomaterials for sustainable water oxidation. Ni6@NiFe-LDH exhibits superior electrochemical performance in oxygen evolution reaction (OER), exhibiting OER overpotentials of 198 mV@10 mA·cm−2 and 290 mV@100 mA·cm−2 with a low Tafel slope of 29 mV·dec−1. It surpasses the corresponding NiFe-LDH and commercial RuO2 catalysts, primarily due to the synergistic interaction between Ni6 clusters and LDHs. Interestingly, our combined experimental and computational approach reveals that the M-OOHads formation is the rate-determining step (RDS) for the Ni6-based catalysts, differing from the RDS for NiFe-LDH itself (the M-Oads formation). These efforts serve as an attempt to push forward the current research frontier to study structure–property relationships progressing from the micro-/nano-level to the precise atomic-level.

Total 2