AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Size hierarchy of gold clusters in nanogold-catalyzed acetylene hydrochlorination

Yifei Zhang1,2,§Xinrui Gu2,§Fatimah Kehinde Busari2,5Sami Barkaoui2Zhong-Kang Han3( )Alfons Baiker4Zhen Zhao1( )Gao Li1,2,5( )
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering Shenyang Normal University, Shenyang 110034, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310000, China
Department of Chemistry and Applied Biosciences, ETH, Hönggerberg, HCI, CH-8093 Zurich, Switzerland
University of Chinese Academy of Sciences, Beijing 100049, China

§ Yifei Zhang and Xinrui Gu contributed equally to this work.

Show Author Information

Graphical Abstract

Thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster combined with in-situ ultraviolet laser dissociation high-resolution mass spectrometry revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in acetylene hydrochlorination and density functional theory (DFT) studies of reaction energy profiles uncovered a scaling relationship, which facilitates prediction of the size-dependence of the adsorption behavior of acetylene on AunSm clusters.

Abstract

Size hierarchy is a distinct feature of nanogold-catalysts as it can strongly affect their performance in various reactions. We developed a simple method to generate AunSm nanoclusters of different sizes by thermal treatment of an Au144(PET)60 (PET: phenylethanethiol) parent cluster. These clusters, deposited on activated carbon, exhibit excellent catalytic performance in the hydrochlorination of acetylene. In-situ ultraviolet laser dissociation high-resolution mass spectrometry of the parent cluster in the presence of acetylene revealed a remarkable cluster size-dependence of acetylene adsorption, which is a crucial step in the hydrochlorination. Systematic density functional theory calculations of the reaction pathways on the differently-sized clusters provide deeper insight into the cluster size dependence of the adsorption energies of the reactants and afforded a scaling relationship between the adsorption energy of acetylene and the co-adsorption energies of the reactants (C2H2 and HCl), which could enable a qualitative prediction of the optimal AunSm cluster for the hydrochlorination of acetylene.

Electronic Supplementary Material

Download File(s)
6976_ESM.pdf (1.1 MB)

References

[1]

Zhou, K.; Jia, J. C.; Li, C. H.; Xu, H.; Zhou, J.; Luo, G. H.; Wei, F. A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes. Green Chem. 2015, 17, 356–364.

[2]

Lu, M.; Yin, X.; Wang, Q. Q.; Zhang, X. C.; Zhu, M. Y.; Dai, B. Application of SnO x /AC catalyst for the acetylene hydrochlorination. Nano Res. 2023, 16, 6577–6583.

[3]

Trotuş, I. T.; Zimmermann, T.; Schüth, F. Catalytic reactions of acetylene: A feedstock for the chemical industry revisited. Chem. Rev. 2014, 114, 1761–1782.

[4]

Bao, Y. X.; Zheng, X. H.; Cao, J. L.; Li, S.; Tuo, Y. X.; Feng, X.; Zhu, M. Y.; Dai, B.; Yang, C. H.; Chen, D. Free radicals induced ultra-rapid synthesis of N-doped carbon sphere catalyst with boosted pyrrolic N active sites for efficient acetylene hydrochlorination. Nano Res. 2023, 16, 6178–6186.

[5]

Zhu, M. Y.; Wang, Q. Q.; Chen, K.; Wang, Y.; Huang, C. F.; Dai, H.; Yu, F.; Kang, L. H.; Dai, B. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination. ACS Catal. 2015, 5, 5306–5316.

[6]

Hutchings, G. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295.

[7]

Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 355, 1399–1403.

[8]

Johnston, P.; Carthey, N.; Hutchings, G. J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 2015, 137, 14548–14557.

[9]

Zhou, K.; Wang, W.; Zhao, Z.; Luo, G. H.; Miller, J. T.; Wong, M. S.; Wei, F. Synergistic gold-bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer. ACS Catal. 2014, 4, 3112–3116.

[10]

Hutchings, G. J.; Grady, D. T. Effect of drying conditions on carbon supported mercuric chloride catalysts. Appl. Catal. 1985, 16, 411–415.

[11]

Chao, S. L.; Guan, Q. X.; Li, W. Study of the active site for acetylene hydrochlorination in AuCl3/C catalysts. J. Catal. 2015, 330, 273–279.

[12]

Zhang, H. Y.; Dai, B.; Li, W.; Wang, X. G.; Zhang, J. L.; Zhu, M. Y.; Gu, J. J. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co(III)-Cu(II) catalysts. J. Catal. 2014, 316, 141–148.

[13]

Nkosi, B.; Adams, M. D.; Coville, N. J.; Hutchings, G. J. Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst reactivation. J. Catal. 1991, 128, 378–386.

[14]

Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Industrial applications of gold catalysis. Angew. Chem., Int. Ed. 2016, 55, 14210–14217.

[15]

Ferraro, F.; Pérez-Torres, J. F.; Hadad, C. Z. Selective catalytic activation of acetylene by a neutral gold cluster of experimentally known gas-phase geometry. J. Phys. Chem. C 2015, 119, 7755–7764.

[16]

Pichugina, D. A.; Nikolaev, S. A.; Mukhamedzyanova, D. F.; Kuz’menko, N. E. Quantum-chemical modeling of ethylene and acetylene adsorption on gold clusters. Russian J. Phys. Chem. A 2014, 88, 959–964.

[17]

Gautam, S.; De Sarkar, A. A systematic investigation of acetylene activation and hydracyanation of the activated acetylene on Au n ( n = 3–10) clusters via density functional theory. Phys. Chem. Chem. Phys. 2016, 18, 13830–13843.

[18]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[19]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[20]

Shi, Q. Q.; Zhang, X. Y.; Li, Z. W.; Raza, A.; Li, G. Plasmonic Au nanoparticle of a Au/TiO2–C3N4 heterojunction boosts up photooxidation of benzyl alcohol using LED light. ACS Appl. Mater. Interfaces 2023, 15, 30161–30169.

[21]

Hu, J. Y.; Yang, Q. W.; Yang, L. F.; Zhang, Z. G.; Su, B. G.; Bao, Z. B.; Ren, Q. L.; Xing, H. B.; Dai, S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catal. 2015, 5, 6724–6731.

[22]

Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

[23]

Li, G.; Jin, R. C. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354.

[24]

Chen, Y. D.; Liu, C.; Abroshan, H.; Li, Z. M.; Wang, J.; Li, G.; Haruta, M. Phosphine/phenylacetylide-ligated Au clusters for multicomponent coupling reactions. J. Catal. 2016, 340, 287–294.

[25]

Chen, H. J.; Li, Z. M.; Qin, Z. X.; Kim, H. J.; Abroshan, H.; Li, G. Silica-encapsulated gold nanoclusters for efficient acetylene hydrogenation to ethylene. ACS Appl. Nano Mater. 2019, 2, 2999–3006.

[26]

Liu, C.; Yan, C. Y.; Lin, J. Z.; Yu, C. L.; Huang, J. H.; Li, G. One-pot synthesis of Au144(SCH2Ph)60 nanoclusters and their catalytic application. J. Mater. Chem. A 2015, 3, 20167–20173.

[27]

Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X. G.; Reuter, K.; Scheffler, M. Ab initio molecular simulations with numeric atom-centered orbitals. Computer. Phys. Commun. 2009, 180, 2175–2196.

[28]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[29]

Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.

[30]

Li, Z. M.; Li, W. L.; Abroshan, H.; Ge, Q. J.; Li, G.; Jin, R. C. Dual effects of water vapor on ceria-supported gold clusters. Nanoscale 2018, 10, 6558–6565.

[31]

Hong, G. T.; Tian, X. H.; Jiang, B. B.; Liao, Z. W.; Wang, J. D.; Yang, Y. R.; Zheng, J. Improvement of performance of a Au-Cu/AC catalyst using thiol for acetylene hydrochlorination reaction. RSC Adv. 2016, 6, 3806–3814.

[32]

Odio, O. F.; Lartundo-Rojas, L.; Santiago-Jacinto, P.; Martínez, R.; Reguera, E. Sorption of gold by naked and thiol-capped magnetite nanoparticles: An XPS approach. J. Phys. Chem. C 2014, 118, 2776–2791.

[33]

Zhao, J.; Wang, B. L.; Xu, X. L.; Yu, Y.; Di, S. X.; Xu, H.; Zhai, Y. Y.; He, H. H.; Guo, L. L.; Pan, Z. Y. et al. Alternative solvent to aqua regia to activate Au/AC catalysts for the hydrochlorination of acetylene. J. Catal. 2017, 350, 149–158.

[34]

Conte, M.; Davies, C. J.; Morgan, D. J.; Davies, T. E.; Elias, D. J.; Carley, A. F.; Johnston, P.; Hutchings, G. J. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. J. Catal. 2013, 297, 128–136.

[35]

Zhang, J. J.; Wang, H. D.; Zhang, Y. F.; Li, Z. W.; Yang, D. Y.; Zhang, D. H.; Tsukuda, T.; Li, G. A revealing insight into gold cluster photocatalysts: Visible versus (vacuum) ultraviolet light. J. Phys. Chem. Lett. 2023, 14, 4179–4184.

[36]

Liu, Z. Y.; Li, Z. M.; Li, G. N.; Wang, Z. P.; Lai, C.; Wang, X. L.; Pidko, E. A.; Xiao, C. L.; Wang, F. J.; Li, G. et al. Single-atom Pt+ derived from the laser dissociation of a platinum cluster: Insights into nonoxidative alkane conversion. J. Phys. Chem. Lett. 2020, 11, 5987–5991.

[37]

Taketoshi, A.; Haruta, M. Size- and structure-specificity in catalysis by gold clusters. Chem. Lett. 2014, 43, 380–387.

[38]

Zhang, Y. F.; Li, Z. W.; Zhang, J. J.; Xu, L. L.; Han, Z. K.; Baiker, A.; Li, G. Nanostructured Ni-MoC x : An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res. 2023, 16, 8919–8928.

[39]

Gu, X. R.; Guo, S.; Zhang, Y. F.; Zhang, J. J.; Sanwal, P.; Xu, L. L.; Zhao, Z.; Jin, R. C.; Li, G. Boosting oxygen evolution performance over synergistic tiara nickel clusters and thin layered double hydroxides. Nano Res. Energy 2024, 3, e9120134.

Nano Research
Pages 9594-9600
Cite this article:
Zhang Y, Gu X, Busari FK, et al. Size hierarchy of gold clusters in nanogold-catalyzed acetylene hydrochlorination. Nano Research, 2024, 17(11): 9594-9600. https://doi.org/10.1007/s12274-024-6976-8
Topics:

325

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 June 2024
Revised: 13 August 2024
Accepted: 18 August 2024
Published: 09 September 2024
© Tsinghua University Press 2024
Return