AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Paper

Improved Simulation of Summer Heavy Rainfall over Beijing and Henan by the YHGSM with Updated Subgrid Orographic Parameters

College of Computer Science and Technology, National University of Defense Technology, Changsha 410600
College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410600
Show Author Information

Abstract

In numerical weather prediction (NWP), the parameterization of orographic drag plays an important role in representing subgrid orographic effects. The subgrid orographic parameters are the key input to the parameterization of orographic drag. Currently, the subgrid orographic parameters in most NWP models were produced based on elevation datasets generated many years ago, with a coarse resolution and low quality. In this paper, using the latest high-quality elevation data and considering the applicable scale range of the subgrid orographic parameters, we construct the orographic parameters, including the subgrid orographic standard deviation, anisotropy, orientation, and slope, that are required as input to the orographic gravity wave drag (OGWD) parameterization. Finally, we introduce the newly constructed orographic parameters into the Yin-He Global Spectral Model (YHGSM), optimize the description of the orographic effect in the model, and improve the simulation of two typical heavy rainfall events in Beijing and Henan.

References

 

Abrams, M., R. Crippen, and H. Fujisada, 2020: ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sens., 12, 1156, doi: 10.3390/rs12071156.

 

Alexander, M. J., M. Geller, C. McLandress, et al., 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 1103–1124, doi: 10.1002/qj.637.

 

Berckmans, J., T. Woollings, M.-E. Demory, et al., 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing. Atmos. Sci. Lett., 14, 34–40, doi: 10.1002/asl2.412.

 
Butler, A., A. Charlton-Perez, D. I. V. Domeisen, et al., 2019: Chapter 11—Sub-seasonal predictability and the stratosphere. Sub-Seasonal to Seasonal Prediction, A. W. Robertson, and F. Vitart, Eds., Elsevier, Amsterdam, 223–241, doi: 10.1016/B978-0-12-811714-9.00011-5.
 
Danielson, J. J., and D. B. Gesch, 2011: Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Open-File Report 2011–1073. USGS, Reston, 23 pp.
 

Davies, L. A., and A. R. Brown, 2001: Assessment of which scales of orography can be credibly resolved in a numerical model. Quart. J. Roy. Meteor. Soc., 127, 1225–1237, doi: 10.1002/qj.49712757405.

 
ECMWF, 2014: IFS documentation CY40R1 - Part IV: Physical processes. IFS Documentation CY40R1, ECMWF, Reading, 1–190, doi: 10.21957/f56vvey1x.
 
ECMWF, 2015: IFS documentation CY41R1 - Part IV: Physical processes. IFS Documentation CY41R1, ECMWF, Reading, 1–210, doi: 10.21957/p50qmwprw.
 
ECMWF, 2021: IFS documentation CY47R3 - Part IV: Physical processes. IFS Documentation CY47R3, ECMWF, Reading, 1–232, doi: 10.21957/eyrpir4vj.
 

Ekholm, S., 1996: A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res. Solid Earth, 101, 21,961–21,972, doi: 10.1029/96JB01912.

 

Elvidge, A. D., I. Sandu, N. Wedi, et al., 2019: Uncertainty in the representation of orography in weather and climate models and implications for parameterized drag. J. Adv. Model. Earth Syst., 11, 2567–2585, doi: 10.1029/2019MS001661.

 

Farr, T. G., P. A. Rosen, E. Caro, et al., 2007: The shuttle radar topography mission. Rev. Geophys., 45, RG2004, doi: 10.1029/2005RG000183.

 

Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi: 10.1029/2001RG000106.

 
Gesch, D. B., and K. S. Larson, 1996: Techniques for development of global 1-kilometer digital elevation models. Proceedings, Pecora Thirteen, Human Interactions with the Environment—Perspectives from Space, American Society of Photogrammetry and Remote Sensing, Sioux Falls, South Dakota, 568–572.
 

Gesch, D. B., K. L. Verdin, and S. K. Greenlee, 1999: New land surface digital elevation model covers the Earth. Eos Trans. Amer. Geophys. Union, 80, 69–70, doi: 10.1029/99EO00050.

 
Hastings, D. A., P. K. Dunbar, G. M. Elphingstone, et al., 1999: Global Land One-kilometer Base Elevation (GLOBE). Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, 1–147.
 
Hong, S. Y., 1999: New Global Orography Data Sets. Office Note 424. National Centers for Environmental Prediction (U.S.), Camp Springs, 1–21.
 

Jiang, T., P. M. Guo, and J. P. Wu, 2020: One-sided on-demand communication technology for the semi-Lagrange scheme in the YHGSM. Concurrency Comput: Pract. Exper., 32, e5586, doi: 10.1002/cpe.5586.

 

Jiang, T., J. P. Wu, Z. Y. Liu, et al., 2021: Optimization of the parallel semi-Lagrangian scheme based on overlapping communication with computation in the YHGSM. Quart. J. Roy. Meteor. Soc., 147, 2293–2302, doi: 10.1002/qj.4023.

 

Kanehama, T., I. Sandu, A. Beljaars, et al., 2019: Which orographic scales matter most for medium-range forecast skill in the Northern Hemisphere winter? J. Adv. Model. Earth Syst., 11, 3893–3910, doi: 10.1029/2019MS001894.

 

Kong, Q., J. L. Fu, Y. Chen, et al., 2022: Evolution characteristics and formation analysis of mesoscale low-level jet and vortex in Henan Province during the July 2021 severe torrential rain. Meteor. Mon., 48, 1512–1524, doi: 10.7519/j.issn.1000-0526.2022.101001. (in Chinese)

 

Liu, B. N., W. M. Zhang, X. Q. Cao, et al., 2016: Investigations and experiments of variances filtering technology in the ensemble data assimilation. Chinese J. Geophys., 59, 33–42, doi: 10.1002/cjg2.20211.

 

Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101–127, doi: 10.1002/qj.49712353704.

 

McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775–1800, doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

 

McLandress, C., 1998: On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J. Atmos. Solar-Terr. Phys., 60, 1357–1383, doi: 10.1016/s1364-6826(98)00061-3.

 
Nikolakopoulos, K. G., D. A. Vaiopoulos, and G. A. Skianis, 2004: Comparing a DTM created with ASTER data to GTOPO 30 and to one created from 1/50.000 topographic maps. Proceedings of the SPIE 5574, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IV, Maspalomas, 22 October, SPIE, Maspalomas, 43–51, doi: 10.1117/12.565755.
 

Nikolakopoulos, K. G., E. K. Kamaratakis, and N. Chrysoulakis, 2006: SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int. J. Remote Sens., 27, 4819–4838, doi: 10.1080/01431160600835853.

 

Palmer, T. N., and D. A. Mansfield, 1986: A study of wintertime circulation anomalies during past El Niño events using a high resolution general circulation model. II: Variability of the seasonal mean response. Quart. J. Roy. Meteor. Soc., 112, 639–660, doi: 10.1002/qj.49711247305.

 

Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039, doi: 10.1002/qj.49711247406.

 
Peng, J., J. P. Wu, W. M. Zhang, et al., 2019. A modified nonhydrostatic moist global spectral dynamical core using a dry-mass vertical coordinate. Quart. J. Roy. Meteor. Soc., 145 , 2477–2490, doi: 10.1002/qj.3574.
 

Peng, J., J. Zhao, W. M. Zhang, et al., 2020: Towards a dry-mass conserving hydrostatic global spectral dynamical core in a general moist atmosphere. Quart. J. Roy. Meteor. Soc., 146, 3206–3224, doi: 10.1002/qj.3842.

 

Pithan, F., T. G. Shepherd, G. Zappa, et al., 2016: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett., 43, 7231–7240, doi: 10.1002/2016GL069551.

 

Roehrig, R., I. Beau, D. Saint-Martin, et al., 2020: The CNRM global atmosphere model ARPEGE-Climat 6.3: Description and evaluation. J. Adv. Model. Earth Syst., 12, e2020MS002075, doi: 10.1029/2020MS002075.

 

Sandu, I., P. Bechtold, A. Beljaars, et al., 2016: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation. J. Adv. Model. Earth Syst., 8, 196–211, doi: 10.1002/2015MS000564.

 

Sandu, I., A. van Niekerk, T. G. Shepherd, et al., 2019: Impacts of orography on large-scale atmospheric circulation. npj Climate Atmos. Sci., 2, 10, doi: 10.1038/s41612-019-0065-9.

 
Tachikawa, T., M. Kaku, A. Iwasaki, et al., 2011: ASTER Global Digital Elevation Model Version 2—Summary of Validation Results. NASA, US, 1–26.
 

van Niekerk, A., J. F. Scinocca, and T. G. Shepherd, 2017: The modulation of stationary waves, and their response to climate change, by parameterized orographic drag. J. Atmos. Sci., 74, 2557–2574, doi: 10.1175/JAS-D-17-0085.1.

 

van Niekerk, A., I. Sandu, and S. B. Vosper, 2018: The circulation response to resolved versus parametrized orographic drag over complex mountain terrains. J. Adv. Model. Earth Syst., 10, 2527–2547, doi: 10.1029/2018MS001417.

 

van Niekerk, A., I. Sandu, A. Zadra, et al., 2020: COnstraining ORographic Drag Effects (COORDE): A model comparison of resolved and parametrized orographic drag. J. Adv. Model. Earth Syst., 12, e2020MS002160, doi: 10.1029/2020MS002160.

 

Vosper, S. B., A. R. Brown, and S. Webster, 2016: Orographic drag on islands in the NWP mountain grey zone. Quart. J. Roy. Meteor. Soc., 142, 3128–3137, doi: 10.1002/qj.2894.

 

Vosper, S. B., A. van Niekerk, A. Elvidge, et al., 2020: What can we learn about orographic drag parametrisation from high-resolution models? A case study over the Rocky Mountains. Quart. J. Roy. Meteor. Soc., 146, 979–995, doi: 10.1002/qj.3720.

 

Wang, Y. J., and J. P. Wu, 2022: Overview of the application of orographic data in numerical weather prediction in complex orographic areas. Adv. Meteor., 2022, 1279625, doi: 10.1155/2022/1279625.

 

Wang, Y. J., J. P. Wu, X. R. Yang, et al., 2022a: Orographic construction of a numerical weather prediction spectral model based on ASTER data and its application to simulation of the Henan 20.7 extreme rainfall event. Remote Sens., 14, 3840, doi: 10.3390/rs14153840.

 

Wang, Y. J., J. P. Wu, J. Peng, et al., 2022b: Extreme rainfall simulations with changing resolution of orography based on the Yin-He global spectrum model: A case study of the Zhengzhou 20·7 extreme rainfall event. Atmosphere, 13, 600, doi: 10.3390/atmos13040600.

 

Webster, S., A. R. Brown, D. R. Cameron, et al., 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989–2010, doi: 10.1256/qj.02.133.

 

Wei, P., X. Xu, M. Xue, et al., 2023: On the key dynamical processes supporting the 21.7 Zhengzhou record-breaking hourly rainfall in China. Adv. Atmos. Sci., 40, 337–349, doi: 10.1007/s00376-022-2061-y.

 

Xu, G. Q., X. S. Yang, L. P. Huang, et al., 2010: Introducing and application testing of the orographic gravity wave drag parameterization physics in the GRAPES. Acta Meteor. Sinica, 68, 631–639, doi: 10.11676/qxxb2010.062. (in Chinese)

 

Yang, J. H., J. Q. Song, J. P. Wu, et al., 2015: A high-order vertical discretization method for a semi-implicit mass-based non-hydrostatic kernel. Quart. J. Roy. Meteor. Soc., 141, 2880–2885, doi: 10.1002/qj.2573.

 

Yang, J. H., J. Q. Song, J. P. Wu, et al., 2017: A semi-implicit deep-atmosphere spectral dynamical kernel using a hydrostatic-pressure coordinate. Quart. J. Roy. Meteor. Soc., 143, 2703–2713, doi: 10.1002/qj.3119.

 

Yang, X. R., W. M. Zhang, J. Peng, et al., 2023: Performance of a global spectral model with dry air-mass and total air-mass conserving dynamical cores: A case study of the July 2021 Henan extreme rainfall event. J. Meteor. Res., 37, 20–44, doi: 10.1007/s13351-023-2040-y.

 

Yin, F. K., G. L. Wu, J. P. Wu, et al., 2018: Performance evaluation of the fast spherical harmonic transform algorithm in the Yin–He global spectral model. Mon. Wea. Rev., 146, 3163–3182, doi: 10.1175/mwr-d-18-0151.1.

 

Yin, F. K., J. Q. Song, J. P. Wu, et al., 2021: An implementation of single-precision fast spherical harmonic transform in Yin-He global spectral model. Quart. J. Roy. Meteor. Soc., 147, 2323–2334, doi: 10.1002/qj.4026.

 

Yin, J. F., H. D. Gu, X. D. Liang, et al., 2022: A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. J. Meteor. Res., 36, 6–25, doi: 10.1007/s13351-022-1166-7.

 

Zhang, R., X. Xu, and Y. Wang, 2020: Impacts of subgrid orographic drag on the summer monsoon circulation and precipitation in East Asia. J. Geophys. Res. Atmos, 125, e2019JD032337, doi: 10.1029/2019jd032337.

 

Zhang, W. M., X. Q. Cao, and J. Q. Song, 2012: Design and implementation of four-dimensional variational data assimilation system constrained by the global spectral model. Acta Phys. Sinica, 61, 249202, doi: 10.7498/aps.61.249202. (in Chinese)

 
Zhang, W. M., Y. Chen, B. N. Liu, et al., 2022: Hybrid Data Assimilation. China Meteorological Press, Beijing, 336 pp. (in Chinese)
Journal of Meteorological Research
Pages 504-529
Cite this article:
WANG Y, WU J, REN K. Improved Simulation of Summer Heavy Rainfall over Beijing and Henan by the YHGSM with Updated Subgrid Orographic Parameters. Journal of Meteorological Research, 2024, 38(3): 504-529. https://doi.org/10.1007/s13351-024-3129-7

35

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 August 2023
Published: 18 December 2023
© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2024
Return