Abstract
Novel two-dimensional (2D) Nb2C nanosheets were successfully prepared through a simple lultrasonic and magnetic stirring treatment from the original accordion-like powder. To further study their water-lubrication properties and deal with common oxidation problems, Nb2C nanosheets with different oxidation degrees were prepared and achieved long-term stability in deionized water. Scanning electron microscope (SEM), transmission electron microscope (TEM), scanning probe microscope (SPM), X-ray powder diffraction (XRD), Raman, and X-ray photoelectron spectrometer (XPS) experiments were utilized to characterize the structure, morphology, and dispersion of Nb2C nanosheets with different degrees of oxidation. The tribological behaviors of Nb2C with different degrees of oxidation as additives for water lubrication were characterized using a UMT-3 friction testing machine. The wear scars formed on the 316 steel surface were measured using three-dimensional (3D) laser scanning confocal microscopy. The tribological results showed that a moderately oxidized Nb2C nanosheet, which owned the composition of Nb2C/Nb2O5/C, displayed excellent tribological performance, with the friction coefficient (COF) decreasing by 90.3% and a decrease in the wear rate by 73.1% compared with pure water. Combining the TEM and Raman spectra, it was shown that Nb2O5 nanoparticles filled in the worn zone, and the layered Nb2C and C were adsorbed into the surface of the friction pair to form a protective lubricating film. This combined action resulted in an excellent lubricating performance.