Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Corrosion at the taper/trunnion interface of total hip replacement (THR) often results in severe complications. However, the underlying mechanisms of biotribocorrosion at the taper/trunnion interface during the long-term walking gait cycles remain to be fully understood. In this study, a hip joint simulator was therefore instrumented with an electrochemical cell for in-situ monitoring of the tribocorrosion evolution in a metal-on-polyethylene (MoP) THR during a typical long-term walking gait. In addition, the biotribocorrosion mechanism was investigated via surface and chemical characterizations. The experimental results confirmed that the taper/trunnion interface dominated the contemporary MoP hip joint corrosion. Three cyclic variations in the open circuit potential (OCP) were observed throughout the long-term electrochemical measurements, attributed to the formation and disruption of the adsorbed protein layer. The corrosion exhibited an initial increase at each period, peaking at approximately 0.125 million cycles, followed by a subsequent gradual reduction. Surface and chemical analyses revealed the formation of a tribochemical reaction layer (tribolayer) on the worn surface of the taper/trunnion interface. The surface/chemical characterizations and the electrochemical measurements indicated that the adhesion force of the adsorbed protein layer was weaker than that of the tribolayer. In contrast, the opposite was true for the corrosion resistance. Based on the observations from this study, the tribocorrosion mechanism of the taper/trunnion interface under the long-term walking gait cycles is deduced.
679
Views
27
Downloads
6
Crossref
6
Web of Science
5
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.