Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this work, we proposed a method for coating the whole surfaces of bearing balls uniformly by carbon film with a rotatable ball clamp. We studied the carbon/carbon friction with a self-designed current- carrying ball bearing friction test system. A notable and instant friction force drop of 28% and significant carbon film wear alleviation were found when currents were applied. By using TEM-, SEM-, and EDS-analysis, special carbon stacks with a mixture of large wear particles and oxide were found in the wear areas under current applied condition. We elucidated the current-carrying friction mechanisms as follows: (1) wear particles formation; (2) wear particles charged by tribomicroplasma; (3) formation of surface passivated carbon stacks under electric force; (4) sliding between passivated carbon surfaces. This work may facilitate the development of novel solid-lubricated ball bearings and lay some foundations for current-carrying rolling friction.
439
Views
15
Downloads
8
Crossref
10
Web of Science
11
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.