AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (6.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Bionic functional membranes for separation of oil-in-water emulsions

Chaolang CHEN1( )Ruisong JIANG1Zhiguang GUO2( )
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
Show Author Information

Graphical Abstract

Abstract

The separation of oil-in-water emulsion is an urgent challenge because its massive production and discharge from daily and industrial activities have caused severe hazards to the ecosystem and serious threats to human health. Membrane technology is considered an outstanding solution strategy for the separation of oil-in-water emulsions due to its unique advantages of low cost, high efficiency, easy operation, and environmental friendliness. However, the membrane is easily fouled by the emulsion oil droplets during the separation process, causing a sharp decline in permeation flux, which greatly inhibits the long-term use of the membrane and largely shortens the membrane’s life. Recently, it was found that endowing the membranes with special wettability e.g., superhydrophilic and superoleophobic can greatly enhance the permeability of the continuous water phase and inhibit the adhesion of oil droplets, thus promoting the separation performance and anti-oil-fouling property of membrane for oily emulsions. In this paper, we review and discuss the recent developments in membranes with special wettability for separating oil-in-water emulsions, including the mechanism analysis of emulsion separation membrane, membrane fouling issues, design strategies, and representative studies for enhancing the membrane’s anti-oil-fouling ability and emulsion separation performance.

References

[1]

Zhao S Y, Xu C G, Zhang J X, Liang Y M, Liu W M, Huang J X, Guo Z G. A robust membrane with dual superlyophobicity for solving water-caused lubricant deterioration and water contamination. Friction 11(8): 1442–1454 (2023)

[2]

Chen Y, Liu W M, Huang J X, Guo Z G. Lubricant self-replenishing slippery surface with prolonged service life for fog harvesting. Friction 10(10): 1676–1692 (2022)

[3]

Yang Y, Guo Z, Liu W. Special superwetting materials from bioinspired to intelligent surface for on-demand oil/water separation: A comprehensive review. Small 18(48): e2204624 (2022)

[4]

Tanudjaja H J, Hejase C A, Tarabara V V, Fane A G, Chew J W. Membrane-based separation for oily wastewater: A practical perspective. Water Res 156: 347–365 (2019)

[5]

Peterson C H, Rice S D, Short J W, Esler D, Bodkin J L, Ballachey B E, Irons D B. Long-term ecosystem response to the exxon valdez oil spill. Science 302(5653): 2082–2086 (2003)

[6]

Zheng Z J, Guo Z G, Liu W M, Luo J B. Low friction of superslippery and superlubricitiy: A review. Friction 11(7): 1121–1137 (2023)

[7]

Zhang J, Liu L, Si Y, Yu J, Ding B. Rational design of electrospun nanofibrous materials for oil/water emulsion separation. Mater Chem Front 5(1): 97–128 (2021)

[8]

Zhang W F, Liu N, Cao Y Z, Lin X, Liu Y N, Feng L. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation. Adv Mate Interfaces 4(10): 18 (2017)

[9]

Lee J, Babadagli T. Comprehensive review on heavy-oil emulsions: Colloid science and practical applications. Chem Eng Sci 228: 115962 (2020)

[10]

Zheng W, Huang J, Li S, Ge M, Teng L, Chen Z, Lai Y K. Advanced materials with special wettability toward intelligent oily wastewater remediation. ACS Appl Mater Interfaces 13(1): 67–87 (2021)

[11]

Bao Z, Chen D, Li N, Xu Q, Li H, He J, Lu J M. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. J Membr Sci 598: 117804 (2020)

[12]

Zolfaghari R, Fakhru’l-Razi A, Abdullah LC, Elnashaie SSEH, Pendashteh A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol 170: 377–407 (2016)

[13]

Jiang Y, Hou J, Xu J, Shan B. Switchable oil/water separation with efficient and robust Janus nanofiber membranes. Carbon 115: 477–485 (2017)

[14]

Guha I F, Varanasi K K. Separating nanoscale emulsions: Progress and challenges to date. Curr Opin Colloid Interface Sci 36: 110–117 (2018)

[15]

Zhang N, Yang X, Wang Y, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A review on oil/water emulsion separation membrane material. J Environ Chem Eng 10(2): 107257 (2022)

[16]

Golshenas A, Sadeghian Z, Ashrafizadeh S N. Performance evaluation of a ceramic-based photocatalytic membrane reactor for treatment of oily wastewater. Journal of Water Process Engineering 36: 101186 (2020)

[17]

Yang C L. Electrochemical coagulation for oily water demulsification. Separation and Purification Technology 54(3): 388–395 (2007)

[18]

Etchepare R, Oliveira H, Azevedo A, Rubio J. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles. Sep Purif Technol 186: 326–332 (2017)

[19]

Guha I F, Varanasi K K. Low-voltage surface electrocoalescence enabled by high-k dielectrics and surfactant bilayers for oil-water separation. ACS Appl Mater Interface 11(38): 34812–34818 (2019)

[20]

Rajak V K, Singh I, Kumar A, Mandal A. Optimization of separation of oil from oil-in-water emulsion by demulsification using different demulsifiers. Pet Sci Technol 34(11–12): 1026–1032 (2016)

[21]

Zolfaghari R, Fakhru'l-Razi A, Abdullah LC, Elnashaie SSEH, Pendashteh A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol 170: 377–407 (2016)

[22]

Rajasekhar T, Trinadh M, Babu P V, Sainath A V S, Reddy A V R. Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. J Membr Sci 481: 82–93 (2015)

[23]

Zhao Y, Gu Y, Liu B, Yan Y, Shan C, Guo J, Zhang S T, Vecitis C D, Gao G D. Pulsed hydraulic-pressure-responsive self-cleaning membrane. Nature 608(7921): 69–73 (2022)

[24]

Cai Y, Shi S Q, Fang Z, Li J. Design, development, and outlook of superwettability membranes in oil/water emulsions separation. Adv Mater Interfaces 8(18): 2100799 (2021)

[25]

Yue X, Li Z, Zhang T, Yang D, Qiu F. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications. Chem Eng J 364: 292–309 (2019)

[26]

Kazemi F, Jafarzadeh Y, Masoumi S, Rostamizadeh M. Oil-in-water emulsion separation by PVC membranes embedded with GO–ZnO nanoparticles. J Environ Chem Eng 9(1): 104992 (2021)

[27]

Zhu Y, Wang D, Jiang L, Jin J. Recent progress in developing advanced membranes for emulsified oil[sol]water separation. NPG Asia Mater 6(5): e101 (2014)

[28]

Ismail NH, Salleh WNW, Ismail AF, Hasbullah H, Yusof N, Aziz F, Jaafar J. Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Sep Purif Technol 233: 116007 (2020)

[29]

Wei Y, Qi H, Gong X, Zhao S. Specially wettable membranes for oil–water separation. Adv Mater Interfaces 5(23): 1800576 (2018)

[30]

Chen C, Chen L, Chen S, Yu Y, Weng D, Mahmood A, Wang G Q, Wang J D. Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions. J Membr Sci 602: 117976 (2020)

[31]

Meng F N, Zhang M Q, Ding K, Zhang T, Gong Y K. Cell membrane mimetic PVDF microfiltration membrane with enhanced antifouling and separation performance for oil/water mixtures. J Mater Chem A 6(7): 3231–3241 (2018)

[32]

Zhu Y, Xie W, Zhang F, Xing T, Jin J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl Mater Interface 9(11): 9603–9613 (2017)

[33]
Di Felice R. Breakthrough Pressure. In: Encyclopedia of Membranes. Drioli E, Giorno L, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 1.
[34]

Zhang C, Wang M. A critical review of breakthrough pressure for tight rocks and relevant factors. J Nat Gas Sci Eng 100: 104456 (2022)

[35]

Washburn E W. The dynamics of capillary flow. Phys Rev 17(3): 273–283 (1921)

[36]

Solomon B R, Hyder M N, Varanasi K K. Separating oil-water nanoemulsions using flux-enhanced hierarchical membranes. Sci Rep 4(1): 5504 (2014)

[37]

Park S H, Yamaguchi T, Nakao S I. Transport mechanism of deformable droplets in microfiltration of emulsions. Chem Eng Sci 56(11): 3539–3548 (2001)

[38]
Zinchenko A Z, Davis R H. Motion of deformable drops through porous media. In: Annual Review of Fluid Mechanics. Davis S H, Moin P, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017: 71–90.
[39]

Cumming I W, Holdich R G, Smith I D. The rejection of oil by microfiltration of a stabilised kerosene/water emulsion. J Membr Sci 169(1): 147–155 (2000)

[40]

Nazzal F F, Wiesner M R. Microfiltration of oil-in-water emulsions. Water Environ Res 68(7): 1187–1191 (1996)

[41]

Liu M, Wang S, Wei Z, Song Y, Jiang L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21(6): 665–+ (2009)

[42]

Wang Q, Wang Y, Wang B, Liang Z, Di J, Yu J. Under-liquid dual superlyophobic nanofibrous polymer membranes achieved by coating thin-film composites: A design principle. Chem Sci 10(25): 6382–6389 (2019)

[43]

Jarn M, Granqvist B, Lindfors J, Kallio T, Rosenholm J B. A critical evaluation of the binary and ternary solid-oil-water and solid-water-oil interaction. Adv Colloid Interface Sci 123: 137–149 (2006)

[44]
Baker R W. Overview of membrane science and technology. In: Membrane Technology and Applications. Baker R W, Ed. Hoboken: John Wiley & Sons, Ltd., 2004: 1–14.
[45]

Chen C, Chen L, Weng D, Chen S, Liu J, Wang J. Revealing the mechanism of superwetting fibrous membranes for separating surfactant-free water-in-oil emulsions. Sep Purif Technol 288: 120621 (2022)

[46]

Huang S, Ras RHA, Tian X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr Opin Colloid Interface Sci 36: 90–109 (2018)

[47]

Luo L, Han G, Chung T-S, Weber M, Staudt C, Maletzko C. Oil/water separation via ultrafiltration by novel triangle-shape tri-bore hollow fiber membranes from sulfonated polyphenylenesulfone. J Membr Sci 476: 162–170 (2015)

[48]

Liu D, Zhu J, Qiu M, He C. Antifouling performance of poly(lysine methacrylamide)-grafted PVDF microfiltration membrane for solute separation. Sep Purif Technol 171: 1–10 (2016)

[49]

Zhang G, Gao F, Zhang Q, Zhan X, Chen F. Enhanced oil-fouling resistance of poly(ether sulfone) membranes by incorporation of novel amphiphilic zwitterionic copolymers. RSC Adv 6(9): 7532–7543 (2016)

[50]

Zhu X, Dudchenko A, Gu X, Jassby D. Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration. J Membr Sci 529: 159–169 (2017)

[51]

Shi C, Zhang L, Xie L, Lu X, Liu Q, Mantilla C, Berg F, Zeng H. Interaction mechanism of oil-in-water emulsions with Asphaltenes determined using droplet probe AFM. Langmuir 32(10): 13285–13291 (2016)

[52]

Israelachvili J N. Intermolecular and Surface Forces. 3rd Ed. Holland: Elsevier Academic Press Inc., 2011.

[53]

Dagastine R R, Manica R, Carnie S L, Chan D Y C, Stevens G W, Grieser F. Dynamic forces between two deformable oil droplets in water. Science 313(5784): 210–213 (2006)

[54]

Zhang L, Shi C, Lu Q, Liu Q, Zeng H. Probing molecularinteractions of asphaltenes in heptol using a surface forcesapparatus: Implications on stability of water-in-oil emulsions. Langmuir 32(19): 4886–4895 (2016)

[55]

Kuznicki N P, Harbottle D, Masliyah J H, Xu Z. Probing mechanical properties of water-crude oil interfaces and colloidal interactions of petroleum emulsions using atomic force microscopy. Energy Fuels 31(4): 3445–3453 (2017)

[56]

Agarwal S, von Arnim V, Stegmaier T, Planck H, Agarwal A. Role of surface wettability and roughness in emulsion separation. Sep Purif Technol 107: 19–25 (2013)

[57]

Ge J L, Zong D D, Jin Q, Yu J Y, Ding B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater 28(10): 1705051 (2018)

[58]

Yu P, Lian Z, Xu J, Yu Z, Ren W, Yu H. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application. Mater Res Express 5(4): 045013 (2018)

[59]

Xu Y, Liu M, Li H, Wali A. Modified metal mesh with bipolar wettability for rapid and gravity-driven oil-water separation and oil collection. Surf Coat Technol 325: 661–672 (2017)

[60]

Zhang Y, Cao Z, Luo Z, Li W, Fu T, Qiu W, Lai Z R, Cheng J F, Yang H C, Ma W Z, Liu C L. Facile fabrication of underwater superoleophobic membrane based on polyacrylamide/chitosan hydrogel modified metal mesh for oil-water separation. J Polym Sci 60(15): 2329–2342 (2022)

[61]

Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater 25(30): 4192–4198 (2013)

[62]

Chen Y, Wang N, Guo F, Hou L, Liu J, Liu J, Xu Y, Zhao Y, Jiang L. A Co3O4 nano-needle mesh for highly efficient, high-flux emulsion separation. J Mater Chem A 4(31): 12014–12019 (2016)

[63]

Lei J, Guo Z. Superamphiphilic stainless steel mesh for oil/water emulsion separation on-demand. Colloids Surf A 630: 127574 (2021)

[64]

Lin X, Chen Y, Liu N, Cao Y, Xu L, Zhang W, Feng L. In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO2 nanocluster-based mesh. Nanoscale 8(16): 8525–8529 (2016)

[65]

Li M, Yang S, Lu Y. Underwater superoleophobic cement-alumina coated meshes for oil/water and emulsion separation. J Dispersion Sci Technol 44(3): 543–550 (2021)

[66]

Chen X, Chen D, Li N, Xu Q, Li H, He J, Lu J. Durable and stable MnMoO4-coated copper mesh for highly efficient oil-in-water emulsion separation and photodegradation of organic contaminants. ACS Appl Mater Interfaces 11(26): 23789–23797 (2019)

[67]

Cheng Z, Li C, Lai H, Du Y, Liu H, Liu M, Jin L, Zhang C, Zhang N, Sun K. A pH-responsive superwetting nanostructured copper mesh film for separating both water-in-oil and oil-in-water emulsions. Rsc Adv 6(76): 72317–72325 (2016)

[68]

Zeng X, Shen Y, Liu Y, Du J, Chen L, Zhou W, Yang H, Zuo J H, Zhou C L, Lin J. A cross-linked coating decorated mesh prepared by brush-painting method for oil-in-water emulsions separation. Mater Chem Phys 242: 122541 (2020)

[69]

Liu W, Cui M, Shen Y, Mu P, Yang Y, Li J. Efficient separation of crude oil-in-water emulsion based on a robust underwater superoleophobic titanium dioxide-coated mesh. New J Chem 44(7): 2705–2713 (2020)

[70]

Wen Q, Guo F, Peng Y, Guo Z. Superwetting meshes with grass-like structures in the pores for highly efficient separation of oil-in-water emulsion. Colloids Surf A 529: 1030–1036 (2017)

[71]

Liu Z, Zuo J, Zhao T, Chen Z, Zeng X, Chen M, Xu S, Cheng J, Wen X, Pi P. A 3D Janus stainless steel mesh bed with high efficiency and flux for on-demand oil-in-water and water-in-oil emulsion separation. Sep Purif Technol 289: 120779 (2022)

[72]

Wang J Y, Kadier A, Hao B, Li H, Ma P C. Performance optimization of a batch scale electrocoagulation process using stainless steel mesh (304) cathode for the separation of oil-in-water emulsion. Chem Eng Process 174: 108901 (2022)

[73]

Yin X, He Y, Li H, Ma X, Zhou L, He T, Li S. One-step in-situ fabrication of carbon nanotube/stainless steel mesh membrane with excellent anti-fouling properties for effective gravity-driven filtration of oil-in-water emulsions. J Colloid Interface Sci 592: 87–94 (2021)

[74]

Li Z, Zhang T C, Mokoba T, Yuan S. Superwetting Bi2MoO6/Cu-3(PO4)(2) nanosheet-coated copper mesh with superior anti-oil-fouling and photo-fenton-like catalytic properties for effective oil-in-water emulsion separation. ACS Appl Mater Interfaces 13(20): 23662–23674 (2021)

[75]

He H, Zhang T C, Li Z, Liang Y, Yuan S. Superhydrophilic fish-scale-like CuC2O4 nanosheets wrapped copper mesh with underwater super oil-repellent properties for effective separation of oil-in-water emulsions. Colloids Surf A 627: 127133 (2021)

[76]

Gao S J, Shi Z, Zhang WB, Zhang F, Jin J. Photoinduced superwetting single-walled carbon nanotube/TiO(2) ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 8(6): 6344–6352 (2014)

[77]

Zhang C L, Yu S H. Spraying functional fibres by electrospinning. Mater Horiz 3(4): 266–269 (2016)

[78]

Kenry, Lim C T. Nanofiber technology: current status and emerging developments. Prog Polym Sci 70: 1–17 (2017)

[79]

Nataraj S K, Yang K S, Aminabhavi T M. Polyacrylonitrile-based nanofibers—A state-of-the-art review. Prog Polym Sci 37(3): 487–513 (2012)

[80]

Wang X, Yu J, Sun G, Ding B. Electrospun nanofibrous materials: A versatile medium for effective oil/water separation. Mater Today 19(7): 403–414 (2016)

[81]

Yan X H, Xiao X, Au C, Mathur S, Huang L J, Wang Y X, Zhang Z J, Zhu Z J, Kipper M J, Tang J G, Chen J. Electrospinning nanofibers and nanomembranes for oil/water separation. J Mater Chem A 9(38): 21659–21684 (2021)

[82]

Su Y, Fan T, Cui W, Li Y, Ramakrishna S, Long Y. Advanced electrospun nanofibrous materials for efficient oil/water separation. Adv Fiber Mater 4(5): 938–958 (2022)

[83]

Zhang J, Liu L, Si Y, Zhang S, Yu J. Tailoring electrospun nanofibrous materials for oil/water emulsion separation. J Text Inst 113(10): 2285–2298 (2022)

[84]

Zhao X, Ren R, Hu M, Pi H, Zhang X, Wu J. Research progress in special wettable nanofibrous membranes for oil/water separation. J Mater Eng 49(10): 43–54 (2021)

[85]

Zhang J, Liu L, Si Y, Yu J, Ding B. Electrospun nanofibrous membranes: An effective arsenal for the purification of emulsified oily wastewater. Adv Funct Mater 30(25): 2002192 (2020)

[86]

Zhao H, He Y, Wang Z, Zhao Y, Sun L. Mussel-inspired fabrication of PDA@PAN electrospun nanofibrous membrane for oil-in-water emulsion separation. Nanomaterials 11(12): 3434 (2021)

[87]

Qing W, Li X, Wu Y, Shao S, Guo H, Yao Z, Chen Y L, Zhang W, Tang C. In situ silica growth for superhydrophilic-underwater superoleophobic Silica/PVA nanofibrous membrane for gravity-driven oil-in-water emulsion separation. J Membr Sci 612: 118476 (2020)

[88]

Wu M, Liu W, Mu P, Wang Q, Li J. Sacrifice template strategy to the fabrication of a self-cleaning nanofibrous membrane for efficient crude oil-in-water emulsion separation with high flux. ACS Appl Mater Interfaces 12(47): 53484–53493 (2020)

[89]

Yan L, Li P, Zhou W, Wang Z, Fan X, Chen M, Fang Y, Liu H. Shrimp shell-inspired antifouling chitin nanofibrous membrane for efficient oil/water emulsion separation with in situ removal of heavy metal ions. ACS Sustainable Chem Eng 7(2): 2064–2072 (2019)

[90]

Li X, Shan H, Cao M, Li B. Mussel-inspired modification of PTFE membranes in a miscible THF-Tris buffer mixture for oil-in-water emulsions separation. J Membr Sci 555: 237–249 (2018)

[91]

Wu J X, Zhang J, Kang Y L, Wu G, Chen S C, Wang Y Z. Reusable and recyclable superhydrophilic electrospun nanofibrous membranes with in situ co-cross-linked polymer-chitin nanowhisker network for robust oil-in-water emulsion separation. ACS Sustainable Chem Eng 6(2): 1753–1762 (2018)

[92]

Panatdasirisuk W, Liao Z, Vongsetskul T, Yang S. Separation of oil-in-water emulsions using hydrophilic electrospun membranes with anisotropic pores. Langmuir 33(23): 5872–5878 (2017)

[93]

Lin Y M, Song C, Rutledge G C. Functionalization of electrospun membranes with polyelectrolytes for separation of oil-in-water emulsions. Adv Mater Interfaces 6(23): 1901285 (2019)

[94]

Ge J, Zhang J, Wang F, Li Z, Yu J, Ding B. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. J Mater Chem A 5(2): 497–502 (2016)

[95]

Zhang Y, Chen Y, Hou L, Guo F, Liu J, Qiu S, Xu Y, Wang N, Zhao Y. Pine-branch-like TiO2 nanofibrous membrane for high efficiency strong corrosive emulsion separation. J Mater Chem A 5(31): 16134–16138 (2017)

[96]

Dmitrieva E S, Anokhina T S, Novitsky E G, Volkov V V, Borisov I L, Volkov A V. Polymeric membranes for oil-water separation: A review. Polymers 14(5): 980 (2022)

[97]

Hu X G, Bekassy-Molnar E, Vatai G, Meiszel L, Olah J. The study of oil/water separation in emulsion by ultrafiltration membranes. Chem Tech 50(3): 119–123 (1998)

[98]

Guan K, Zhang L, Wang S, Takagi R, Matsuyama H. Controlling the formation of porous polyketone membranes via a cross-linkable alginate additive for oil-in-water emulsion separations. J Membr Sci 611: 118362 (2020)

[99]

Zarghami S, Mohammadi T, Sadrzadeh M, Van der Bruggen B. Superhydrophilic and underwater superoleophobic membranes - A review of synthesis methods. Prog in Polym Sci 98: 101166 (2019)

[100]

Yu Q, Zhang W, Zhao X, Cao G, Liu F, Di X, Yang H Y, Wang Y Z, Wang C Y. A simple, green method to fabricate composite membranes for effective oil-in-water emulsion separation. Polymers 10(3): 323 (2018)

[101]

Chen G, Ma Z, Xiao K, Wang X, Liang S, Huang X. Hierarchically textured superhydrophilic polyvinylidene fluoride membrane via nanocasting and post-fabrication grafting of surface-tailored silica nanoparticles. Environ Sci: Nano 6(12): 3579–3589 (2019)

[102]

Yang X, Yan L, Ran F, Pal A, Long J, Shao L. Interface-confined surface engineering constructing water-unidirectional Janus membrane. J Membr Sci 576: 9–16 (2019)

[103]

Shalaby M S, Sołowski G, Abbas W. Recent aspects in membrane separation for oil/water emulsion. Adv Mater Interfaces 8(20): 2100448 (2021)

[104]

Yang H C, Liao K J, Huang H, Wu Q Y, Wan L S, Xu Z K. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J Mater Chem A 2(26): 10225–10230 (2014)

[105]

Zhu Y, Zhang F, Wang D, Pei XF, Zhang W, Jin J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J Mater Chem A 1(18): 5758–5765 (2013)

[106]

Yuan T, Meng J, Hao T, Wang Z, Zhang Y. A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation. ACS Appl Mater Interfaces 7(27): 14896–14904 (2015)

[107]

Mo Y, Zhang F, Dong H, Zhang X, Gao S, Zhang S, Jin J. Ultrasmall Cu(3)(PO(4))(2) nanoparticles reinforced hydrogel membrane for super-antifouling oil/water emulsion separation. ACS Nano 16(12): 20786–20795 (2022)

[108]

Gao S, Chen J, Zheng Y, Wang A, Dong D, Zhu Y, Zhang Y T, Fang W X, Jin J. Gradient adhesive hydrogel decorated superhydrophilic membranes for ultra-stable oil/water separation. Adv Funct Mater 32(46): 2205990 (2022)

[109]

Lin T C, Lee D J. Cotton fabrics modified for use in oil/water separation: A perspective review. Cellulose 28(8): 4575–4594 (2021)

[110]

Fang Y, Jing C, Li G, Ling S, Wang Z, Lu P, Li Q, Dai C C, Gao S, Chen B L. Wood-derived systems for sustainable oil/water separation. Adv Sustainable Sys 5(7): 2100039 (2021)

[111]

Chen C, Peng X. Constructing superhydrophobic sands layer with PTFE nanocoating for desert water storage and oil/water separation. Colloids Surf A 657: 130517 (2023)

[112]

Kim S, Kim K, Jun G, Hwang W. Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14(12): 17233–17240 (2020)

[113]

Kong W, Pan Y, Bhushan B, Zhao X. Superhydrophilic Al(2)O(3) particle layer for efficient separation of oil-in-water (O/W) and water-in-oil (W/O) emulsions. Langmuir 36(44): 13285–13291 (2020)

[114]

Yao L, Zhang S, Wang R, Zhang L, Wang Y, Yin W. Phosphoric acid functionalized superhydrophilic and underwater superoleophobic UiO-66/polyester fabric composite membrane for efficient oil/water separation and Gd(Ⅲ) recovery. Desalination 544: 116141 (2022)

[115]

Zhang D, Wang G, Zhi S, Xu K, Zhu L, Li W, Zeng Z, Xue Q. Superhydrophilicity and underwater superoleophobicity TiO2/Al2O3 composite membrane with ultra low oil adhesion for highly efficient oil-in-water emulsions separation. Appl Surf Sci 458: 157–165 (2018)

[116]

Zeng M, Peng B, Ybanez C, Tan N W, Deeb E A, Bordovsky E, Choi C H, Echols I, Nguyen A, Ye A, et al. High-flux underwater superoleophobic hybrid membranes for effective oil–water separation from oil-contaminated water. RSC Adv 7(15): 9051–9056 (2017)

[117]

Yang J, Li H N, Chen Z X, He A, Zhong Q Z, Xu Z K. Janus membranes with controllable asymmetric configurations for highly efficient separation of oil-in-water emulsions. J Mater Chem A 7(13): 7907–7917 (2019)

[118]

Wang Z, Wang Y, Liu G. Rapid and efficient separation of oil from oil-in-water emulsions using a janus cotton fabric. Angew Chem 55(4): 1291–1294 (2016)

[119]

Li H, Mu P, Li J, Wang Q. Inverse desert beetle-like ZIF-8/PAN composite nanofibrous membrane for highly efficient separation of oil-in-water emulsions. J Mater Chem A 9(7): 4167–4175 (2021)

[120]

Singh C J, Mukhopadhyay S, Rengasamy R S. Fibrous coalescence filtration in treating oily wastewater: A review. J Ind Text 51(3): 3648S–3682S (2021)

[121]

Lu H, Pan Z, Wang H, Liu Y, Dai P, Yang Q. Fiber coalescence treatment of oily wastewater: A new theory and application. J Hazard Mater 412: 125188 (2021)

[122]

Yang Q, L H, Li Y D, Dai P Y, PAN Z C, Liu Y Q. Application and research progress of coalescence separation in oily wastewater treatment. Chin J Environ Eng 15(03): 767–781 (2021)

[123]

Chen C, Chen L, Weng D, Li X, Li Z, Wang J. Simulation study on the dynamic behaviors of water-in-oil emulsified droplets on coalescing fibers. Langmuir 36(48): 14872–14880 (2020)

[124]

Lu H, Liu Y Q, Cai J B, Xu X, Xie L S, Yang Q, Li Y X, Zhu K. Treatment of offshore oily produced water: Research and application of a novel fibrous coalescence technique. J Pet Sci Eng 178: 602–608 (2019)

[125]

Lu H, Yang Q, Xu X, Wang H L. Effect of the mixed oleophilic fibrous coalescer geometry and the operating conditions on oily wastewater separation. Chem Eng Technol 39(2): 255–262 (2016)

[126]

Liu Y, Lu H, Li Y, Xu H, Pan Z, Dai P, Wang H L, Yang Q. A review of treatment technologies for produced water in offshore oil and gas fields. Sci Total Environ 775: 145485 (2021)

Friction
Pages 1909-1928
Cite this article:
CHEN C, JIANG R, GUO Z. Bionic functional membranes for separation of oil-in-water emulsions. Friction, 2024, 12(9): 1909-1928. https://doi.org/10.1007/s40544-023-0819-6

131

Views

6

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 April 2023
Revised: 06 July 2023
Accepted: 27 August 2023
Published: 01 May 2024
© The author(s) 2023.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return