AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (458.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Choosing proper fluorescent dyes, proteins, and imaging techniques to study mitochondrial dynamics in mammalian cells

Xingguo Liu1( )Liang Yang1Qi Long1David Weaver2György Hajnóczky2( )
Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
Show Author Information

Graphical Abstract

Abstract

Mitochondrial dynamics refers to the processes maintaining mitochondrial homeostasis, including mitochondrial fission, fusion, transport, biogenesis, and mitophagy. Mitochondrial dynamics is essential for maintaining the metabolic function of mitochondria as well as their regulatory roles in cell signaling. In this review, we summarize the recently developed imaging techniques for studying mitochondrial dynamics including: mitochondrial-targeted fluorescent proteins and dyes, live-cell imaging using photoactivation, photoswitching and cell fusion, mitochondrial transcription and replication imaging by in situ hybridization, and imaging mitochondrial dynamics by super-resolution microscopy. Moreover, we discuss examples of how to choose and combine proper fluorescent dyes and/or proteins.

References

 

Andersen E, Asuri N, Clay M, Halloran M, (2010) Live imaging of cell motility and actin cytoskeleton of individual neurons and neural crest cells in zebrafish embryos.J Vis Exp 36:1726

 

Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A, (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein.Proc Natl Acad Sci USA 99:12651-12656

 

Appelhans T, Richter CP, Wilkens V, Hess ST, Piehler J, Busch KB, (2012) Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy.Nano Lett 12:610-616

 

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF, (2006) Imaging intracellular fluorescent proteins at nanometer resolution.Science 313:1642-1645

 

Carvalho PH, Correa JR, Guido BC, Gatto CC, De Oliveira HC, Soares TA, Neto BA, (2014) Designed benzothiadiazole fluorophores for selective mitochondrial imaging and dynamics.Chemistry 20:15360-15374

 

Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T, (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications.Proc Natl Acad Sci USA 109:4455-4460

 

Chatre L, Ricchetti M, (2015) mTRIP: an imaging tool to investigate mitochondrial DNA dynamics in physiology and disease at the single-cell resolution.Methods Mol Biol 1264:133-147

 

Chazotte B, (2011) Labeling mitochondria with MitoTracker dyes.Cold Spring Harb Protoc 2011:990-992

 

Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC, (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development.J Cell Biol 160:189-200

 

Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA, (2003) Kindling fluorescent proteins for precise in vivo photolabeling.Nat Biotechnol 21:191-194

 

Cornaglia M, Mouchiroud L, Marette A, Narasimhan S, Lehnert T, Jovaisaite V, Auwerx J, Gijs MA, (2015) An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging.Sci Rep 5:10192

 

Detmer SA, Chan DC, (2007) Functions and dysfunctions of mitochondrial dynamics.Nat Rev Mol Cell Biol 8:870-879

 

Ekanayake SB, El Zawily AM, Paszkiewicz G, Rolland A, Logan DC, (2015) Imaging and analysis of mitochondrial dynamics in living cells.Methods Mol Biol 1305:223-240

 

Fernandez-Suarez M, Ting AY, (2008) Fluorescent probes for super-resolution imaging in living cells.Nat Rev Mol Cell Biol 9:929-943

 

Friedman JR, Nunnari J, (2014) Mitochondrial form and function.Nature 505:335-343

 

Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K, (2015) MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites.Mol Cell Proteom 14:1113-1126

 

Gustafsson MG, (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.J Microsc 198:82-87

 

Gustafsson MG, (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution.Proc Natl Acad Sci USA 102:13081-13086

 

Hell SW, (2003) Toward fluorescence nanoscopy.Nat Biotechnol 21:1347-1355

 

Huang LJ, Wang L, Ma Y, Durick K, Perkins G, Deerinck TJ, Ellisman MH, Taylor SS, (1999) NH2-Terminal targeting motifs direct dual specificity A-kinase-anchoring protein 1 (D-AKAP1) to either mitochondria or endoplasmic reticulum.J Cell Biol 145:951-959

 

Huang S, Han R, Zhuang Q, Du L, Jia H, Liu Y, Liu Y, (2015) New photostable naphthalimide-based fluorescent probe for mitochondrial imaging and tracking.Biosens Bioelectron 71:313-321

 

Huang S, Han R, Zhuang Q, Du L, Jia H, Liu Y, Liu Y, (2015) New photostable naphthalimide-based fluorescent probe for mitochondrial imaging and tracking.Biosens Bioelectron 71:313-321

 

Jakobs S, Wurm CA, (2014) Super-resolution microscopy of mitochondria.Curr Opin Chem Biol 20:9-15

 

Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, Deckers M, Rehling P, Jakobs S, (2013) STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria.Proc Natl Acad Sci USA 110:8936-8941

 

Joshi DC, Bakowska JC, (2011) Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons.J Vis Exp 51:e2704

 

Karbowski M, Cleland MM, Roelofs BA, (2014) Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells.Methods Enzymol 547:57-73

 

Katajisto P, Dohla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S, Zoncu R, Chen W, Weinberg RA, Sabatini DM, (2015) Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness.Science 348:340-343

 

Klein T, Loschberger A, Proppert S, Wolter S, van de Linde S, Sauer M, (2011) Live-cell dSTORM with SNAP-tag fusion proteins.Nat Methods 8:7-9

 

Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S, (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA.Proc Natl Acad Sci USA 108:13534-13539

 

Kuzmenko A, Tankov S, English BP, Tarassov I, Tenson T, Kamenski P, Elf J, Hauryliuk V, (2011) Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40.Sci Rep 1:195

 

Liesa M, Shirihai OS, (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.Cell Metab 17:491-506

 

Liu X, Weaver D, Shirihai O, Hajnoczky G, (2009) Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics.EMBO J 28:3074-3089

 

Logan DC, Leaver CJ, (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells.J Exp Bot 51:865-871

 

Lovy A, Molina AJ, Cerqueira FM, Trudeau K, Shirihai OS, (2012) A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.J Vis Exp 65:e3991

 

Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Correa IRJr, Luo ZG, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K, (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins.Nat Chem 5:132-139

 

Malka F, Guillery O, Cifuentes-Diaz C, Guillou E, Belenguer P, Lombes A, Rojo M, (2005) Separate fusion of outer and inner mitochondrial membranes.EMBO Rep 6:853-859

 

Martelli PL, Savojardo C, Fariselli P, Tasco G, Casadio R, (2015) Computer-based prediction of mitochondria-targeting peptides.Methods Mol Biol 1264:305-320

 

Matsushima R, Hamamura Y, Higashiyama T, Arimura S, Sodmergen Tsutsumi N, Sakamoto W, (2008) Mitochondrial dynamics in plant male gametophyte visualized by fluorescent live imaging.Plant Cell Physiol 49:1074-1083

 

McBride HM, Neuspiel M, Wasiak S, (2006) Mitochondria: more than just a powerhouse.Curr Biol: CB 16:R551-R560

 
Mitra K, Lippincott-Schwartz J (2010) Analysis of mitochondrial dynamics and functions using imaging approaches. Curr Protoc Cell Biol Chapter 4: Unit 4 25 21–21
 

Owens GC, Edelman DB, (2015) Photoconvertible fluorescent protein-based live imaging of mitochondrial fusion.Methods Mol Biol 1313:237-246

 

Owens GC, Walcott EC, (2012) Extensive fusion of mitochondria in spinal cord motor neurons.PLoS ONE 7:e38435

 

Patterson GH, Lippincott-Schwartz J, (2002) A photoactivatable GFP for selective photolabeling of proteins and cells.Science 297:1873-1877

 

Patterson G, Davidson M, Manley S, Lippincott-Schwartz J, (2010) Superresolution imaging using single-molecule localization.Ann Rev Phys Chem 61:345-367

 

Pham AH, McCaffery JM, Chan DC, (2012) Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics.Genesis 50:833-843

 

Rocha S, De Keersmaecker H, Uji-i H, Hofkens J, Mizuno H, (2014) Photoswitchable fluorescent proteins for superresolution fluorescence microscopy circumventing the diffraction limit of light.Methods Mol Biol 1076:793-812

 

Rust MJ, Bates M, Zhuang X, (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).Nat Methods 3:793-795

 

Scaduto RCJr, Grotyohann LW, (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives.Biophys J 76:469-477

 

Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV, (2014) Photocontrollable fluorescent proteins for superresolution imaging.Ann Rev Biophys 43:303-329

 

Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi GQ, Zhuang X, (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes.Proc Natl Acad Sci USA 109:13978-13983

 

Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV, (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.Nat Methods 6:153-159

 

Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV, (2011) A photoswitchable orange-to-far-red fluorescent protein, PSmOrange.Nat Methods 8:771-777

 

Suzuki H, Maeda M, Mihara K, (2002) Characterization of rat TOM70 as a receptor of the preprotein translocase of the mitochondrial outer membrane.J Cell Sci 115:1895-1905

 

Tatsuta T, Langer T, (2008) Quality control of mitochondria: protection against neurodegeneration and ageing.EMBO J 27:306-314

 

Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS, (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy.EMBO J 27:433-446

 

Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU, (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion.Proc Natl Acad Sci USA 101:15905-15910

 

Wilkens V, Kohl W, Busch K, (2013) Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution.J Cell Sci 126:103-116

 

Yamakoshi H, Palonpon A, Dodo K, Ando J, Kawata S, Fujita K, Sodeoka M, (2015) A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria.Bioorg Med Chem Lett 25:664-667

 

Yang L, Long Q, Liu J, Tang H, Li Y, Bao F, Qin D, Pei D, Liu X, (2015) Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA.Cell Mol Life Sci 72:2585

 

Youle RJ, van der Bliek AM, (2012) Mitochondrial fission, fusion, and stress.Science 337:1062-1065

Biophysics Reports
Pages 64-72
Cite this article:
Liu X, Yang L, Long Q, et al. Choosing proper fluorescent dyes, proteins, and imaging techniques to study mitochondrial dynamics in mammalian cells. Biophysics Reports, 2017, 3(4-6): 64-72. https://doi.org/10.1007/s41048-017-0037-8

251

Views

4

Downloads

20

Crossref

0

Scopus

1

CSCD

Altmetrics

Received: 25 April 2016
Accepted: 05 September 2016
Published: 24 March 2017
© The Author(s) 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return