AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Skeleton-based canonical forms for non-rigid 3D shape retrieval

School of Computer Science and Informatics, Cardiff University, Cardiff, CF24 3AA, UK.
Show Author Information

Abstract

The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending-invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to “unbend” a shape by applying multidimensional scaling (MDS) to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to computational speed-up, and reduced distortion of local shape detail. We compare our method against other canonical forms: our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over the state-of-the-art in a second recent benchmark, while being significantly faster.

References

[1]
Li, B.; Godil, A.; Aono, M.; Bai, X.; Furuya, T.; Li, L.; López-Sastre, R.; Johan, H.; Ohbuchi, R.; Redondo-Cabrera, C.; Tatsuma, A.; Yanagimachi, T.; Zhang, S. SHREC ’12 track: Generic 3D shape retrieval. In: Proceedings of the 5th Eurographics Conference on 3D Object Retrieval, 119-126, 2012.
[2]
Elad, A.; Kimmel, R. On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 25, No. 10, 1285-1295, 2003.
[3]
Pickup, D.; Sun, X.; Rosin, P. L.; Martin, R. R.; Cheng, Z.; Nie, S.; Jin, L. Canonical forms for non-rigid 3D shape retrieval. In: Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval, 99-106, 2015.
[4]
Chen, D.-Y.; Tian, X.-P.; Shen, Y.-T.; Ouhyoung, M. On visual similarity based 3D model retrieval. Computer Graphics Forum Vol. 22, No. 3, 223-232, 2003.
[5]
Johnson, A. E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 21, No. 5, 433-449, 1999.
[6]
Tangelder, J. W. H.; Veltkamp, R. C. A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications Vol. 39, No. 3, 441-471, 2008.
[7]
Boyer, E.; Bronstein, A. M.; Bronstein, M. M.; Bustos, B.; Darom, T.; Horaud, R.; Hotz, I.; Keller, Y.; Keustermans, J.; Kovnatsky, A.; Litmany, R.; Reininghaus, J.; Sipiran, I.; Smeets, D.; Suetens, P.; Vandermeulen, D.; Zaharescu, A.; Zobel, V. SHREC 2011: Robust feature detection and description benchmark. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, 71-78, 2011.
[8]
Smeets, D.; Keustermans, J.; Vandermeulen, D.; Suetens, P. meshSIFT: Local surface features for 3D face recognition under expression variations and partial data. Computer Vision and Image Understanding Vol. 117, No. 2, 158-169, 2013.
[9]
Ben-Chen, M.; Gotsman, C. Characterizing shape using conformal factors. In: Proceedings of the 1st Eurographics Conference on 3D Object Retrieval, 1-8, 2008.
[10]
Giachetti, A.; Lovato, C. Radial symmetry detection and shape characterization with the multiscale area projection transform. Computer Graphics Forum Vol. 31, No. 5, 1669-1678, 2012.
[11]
Sun, J.; Ovsjanikov, M.; Guibas, L. A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum Vol. 28, No. 5, 1383-1392, 2009.
[12]
Lian, Z.; Zhang, J.; Choi, S.; ElNaghy, H.; El-Sana, J.; Furuya, T.; Giachetti, A.; Guler, R. A.; Lai, L.; Li, C.; Li, H.; Limberger, F. A.; Martin, R.; Nakanishi, R. U.; Neto, A. P.; Nonato, L. G.; Ohbuchi, R.; Pevzner, K.; Pickup, D.; Rosin, P.; Sharf, A.; Sun, L.; Sun, X.; Tari, S.; Unal, G.; Wilson, R. C. Non-rigid 3D shape retrieval. In: Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval, 107-120, 2015.
[13]
Pickup, D.; Sun, X.; Rosin, P. L.; Martin, R. R.; Cheng, Z.; Lian, Z.; Aono, M.; Hamza, A. B.; Bronstein, A.; Bronstein, M.; Bu, S.; Castellani, U.; Cheng, S.; Garro, V.; Giachetti, A.; Godil, A.; Han, J.; Johan, H.; Lai, L.; Li, B.; Li, C.; Li, H.; Litman, R.; Liu, X.; Liu, Z.; Lu, Y.; Tatsuma, A.; Ye, J. Shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th Eurographics Workshop on 3D Object Retrieval, 101-110, 2014.
[14]
Hilaga, M.; Shinagawa, Y.; Kohmura, T.; Kunii, T. L. Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 203-212, 2001.
[15]
Sfikas, K.; Theoharis, T.; Pratikakis, I. Non-rigid 3D object retrieval using topological information guided by conformal factors. The Visual Computer Vol. 28, No. 9, 943-955, 2012.
[16]
Reuter, M.; Wolter, F.-E.; Peinecke, N. Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Computer-Aided Design Vol. 38, No. 4, 342-366, 2006.
[17]
Smeets, D.; Hermans, J.; Vandermeulen, D.; Suetens, P. Isometric deformation invariant 3D shape recognition. Pattern Recognition Vol. 45, No. 7, 2817-2831, 2012.
[18]
Shamai, G.; Zibulevsky, M.; Kimmel, R. Accelerating the computation of canonical forms for 3D nonrigid objects using multidimensional scaling. In: Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval, 71-78, 2015.
[19]
Lian, Z.; Godil, A.; Xiao, J. Feature-preserved 3D canonical form. International Journal of Computer Vision Vol. 102, No. 1, 221-238, 2013.
[20]
Wang, X.-L.; Zha, H. Contour canonical form: An efficient intrinsic embedding approach to matching non-rigid 3D objects. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, Article No. 31, 2012.
[21]
Pickup, D.; Sun, X.; Rosin, P. L.; Martin, R. R. Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval. Pattern Recognition Vol. 48, No. 8, 2500-2512, 2015.
[22]
Boscaini, D.; Girdziušas, R.; Bronstein, M. M. Coulomb shapes: Using electrostatic forces for deformation-invariant shape representation. In: Proceedings of the 7th Eurographics Workshop on 3D Object Retrieval, 9-15, 2014.
[23]
Crane, K.; Weischedel, C.; Wardetzky, M. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics Vol. 32, No. 5, Article No. 152, 2013.
[24]
Ying, X.; Xin, S.-Q.; He, Y. Parallel chen-han (PCH) algorithm for discrete geodesics. ACM Transactions on Graphics Vol. 33, No. 1, Article No. 9, 2014.
[25]
Lian, Z.; Godil, A.; Bustos, B.; Daoudi, M.; Hermans, J.; Kawamura, S.; Kurita, Y.; Lavoué, G.; Nguyen, H. V.; Ohbuchi, R.; Ohkita, Y.; Ohishi, Y.; Porikli, F.; Reuter, M.; Sipiran, I.; Smeets, D.; Suetens, P.; Tabia, H.; Vandermeulen, D. SHREC ’11 track: Shape retrieval on non-rigid 3D watertight meshes. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, 79-88, 2011.
[26]
Lian, Z.; Godil, A.; Sun, X.; Xiao, J. CM-BOF: Visual similarity-based 3D shape retrieval using clock matching and bag-of-features. Machine Vision and Applications Vol. 24, No. 8, 1685-1704, 2013.
[27]
Kimmel, R.; Sethian, J. A. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences of the United States of the America Vol. 95, No. 15, 8431-8435, 1998.
[28]
Borg, I.; Groenen, P. J. F. Modern Multidimensional Scaling: Theory and Applications. Springer-Verlag New York, 2005.
[29]
Au, O. K.-C.; Tai, C.-L.; Chu, H.-K.; Cohen-Or, D.; Lee, T.-Y. Skeleton extraction by mesh contraction. In: Proceedings of ACM SIGGRAPH 2008 Papers, Article No. 44, 2008.
[30]
Yan, H.-B.; Hu, S.-M.; Martin, R.; Yang, Y.-L. Shape deformation using a skeleton to drive simplex transformations. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 3, 693-706, 2008.
[31]
Baeza-Yates, R. A.; Ribeiro-Neto, B. A. Modern Information Retrieval: The Concepts and Technology behind Search, 2nd edn. Harlow, England: Pearson Education Ltd., 2011.
Computational Visual Media
Pages 231-243
Cite this article:
Pickup D, Sun X, Rosin PL, et al. Skeleton-based canonical forms for non-rigid 3D shape retrieval. Computational Visual Media, 2016, 2(3): 231-243. https://doi.org/10.1007/s41095-016-0045-5

831

Views

34

Downloads

13

Crossref

N/A

Web of Science

16

Scopus

0

CSCD

Altmetrics

Revised: 26 January 2016
Accepted: 20 February 2016
Published: 14 April 2016
© The Author(s) 2016

This article is published with open access at Springerlink.com

The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return