Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Existing unsupervised person re-identificationapproaches fail to fully capture the fine-grained features of local regions, which can result in people with similar appearances and different identities being assigned the same label after clustering. The identity-independent information contained in different local regions leads to different levels of local noise. To address these challenges, joint training with local soft attention and dual cross-neighbor label smoothing (DCLS) is proposed in this study. First, the joint training is divided into global and local parts, whereby a soft attention mechanism is proposed for the local branch to accurately capture the subtle differences in local regions, which improves the ability of the re-identification model in identifying a person’s local significant features. Second, DCLS is designed to progressively mitigate label noise in different local regions. The DCLS uses global and local similarity metrics to semantically align the global and local regions of the person and further determines the proximity association between local regions through the cross information of neighboring regions, thereby achieving label smoothing of the global and local regions throughout the training process. In extensive experiments, the proposed method outperformed existing methods under unsupervised settings on several standard person re-identification datasets.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.