Distinguishing identity-unrelated background information from discriminative identity information poses a challenge in unsupervised vehicle re-identification (Re-ID). Re-ID models suffer from varying degrees of background interference caused by continuous scene variations. The recently proposed segment anything model (SAM) has demonstrated exceptional performance in zero-shot segmentation tasks. The combination of SAM and vehicle Re-ID models can achieve efficient separation of vehicle identity and background information. This paper proposes a method that combines SAM-driven mask autoencoder (MAE) pre-training and background-aware meta-learning for unsupervised vehicle Re-ID. The method consists of three sub-modules. First, the segmentation capacity of SAM is utilized to separate the vehicle identity region from the background. SAM cannot be robustly employed in exceptional situations, such as those with ambiguity or occlusion. Thus, in vehicle Re-ID downstream tasks, a spatially-constrained vehicle background segmentation method is presented to obtain accurate background segmentation results. Second, SAM-driven MAE pre-training utilizes the aforementioned segmentation results to select patches belonging to the vehicle and to mask other patches, allowing MAE to learn identity-sensitive features in a self-supervised manner. Finally, we present a background-aware meta-learning method to fit varying degrees of background interference in different scenarios by combining different background region ratios. Our experiments demonstrate that the proposed method has state-of-the-art performance in reducing background interference variations.
- Article type
- Year
- Co-author
Existing unsupervised person re-identificationapproaches fail to fully capture the fine-grained features of local regions, which can result in people with similar appearances and different identities being assigned the same label after clustering. The identity-independent information contained in different local regions leads to different levels of local noise. To address these challenges, joint training with local soft attention and dual cross-neighbor label smoothing (DCLS) is proposed in this study. First, the joint training is divided into global and local parts, whereby a soft attention mechanism is proposed for the local branch to accurately capture the subtle differences in local regions, which improves the ability of the re-identification model in identifying a person’s local significant features. Second, DCLS is designed to progressively mitigate label noise in different local regions. The DCLS uses global and local similarity metrics to semantically align the global and local regions of the person and further determines the proximity association between local regions through the cross information of neighboring regions, thereby achieving label smoothing of the global and local regions throughout the training process. In extensive experiments, the proposed method outperformed existing methods under unsupervised settings on several standard person re-identification datasets.