PDF (8.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (18)

Show 9 more figures Hide 9 figures
Research Article | Open Access

Watertight surface reconstruction method for CAD models based on optimal transport

School of Informatics, Xiamen University, Xiamen 361005, China
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Feature-preserving mesh reconstruction from point clouds is challenging. Implicit methods tend to fit smooth surfaces and cannot be used to reconstruct sharp features. Explicit reconstruction methods are sensitive to noise and only interpolate sharp features when points are distributed on feature lines. We propose a watertight surface reconstruction method based on optimal transport that can accurately reconstruct sharp features often present in CAD models. We formalize the surface reconstruction problem by minimizing the optimal transport cost between the point cloud and the reconstructed surface. The algorithm consists of initialization and refinement steps. In the initialization step, the convex hull of the point cloud is deformed under the guidance of a transport plan to obtain an initial approximate surface. Next, the mesh surface was optimized using operations including vertex relocation and edge collapses/flips to obtain feature-preserving results. Experiments demonstrate that our method can preserve sharp features while being robust to noise and missing data.

References

[1]

Berger, M.; Tagliasacchi, A.; Seversky, L. M.; Alliez, P.; Guennebaud, G.; Levine, J. A.; Sharf, A.; Silva, C. T. A survey of surface reconstruction from point clouds. Computer Graphics Forum Vol. 36, No. 1, 301–329, 2017.

[2]

Cohen-Steiner, D.; Da, F. A greedy Delaunay-based surface reconstruction algorithm. The Visual Computer Vol. 20, No. 1, 4–16, 2004.

[3]

Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics Vol. 5, No. 4, 349–359, 1999.

[4]

Digne, J.; Morel, J. M.; Souzani, C. M.; Lartigue, C. Scale space meshing of raw data point sets. Computer Graphics Forum Vol. 30, No. 6, 1630–1642, 2011.

[5]

Chen, Z.; Zhang, T.; Cao, J.; Zhang, Y. J.; Wang, C. Point cloud resampling using centroidal Voronoi tessellation methods. Computer-Aided Design Vol. 102, 12–21, 2018.

[6]
Sharp, N.; Ovsjanikov, M. PointTriNet: Learned triangulation of 3D point sets. In: Computer Vision – ECCV 2020. Lecture Notes in Computer Science, Vol. 12368. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 762–778, 2020.
[7]
Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, 71–78, 1992.
[8]
Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In: Proceedings of the 4th Eurographics Symposium on Geometry Processing, 61–70, 2006.
[9]

Kazhdan, M.; Hoppe, H. Screened Poisson surface reconstruction. ACM Transactions on Graphics Vol. 32, No. 3, Article No. 29, 2013.

[10]

Hou, F.; Wang, C.; Wang, W.; Qin, H.; Qian, C.; He, Y. Iterative Poisson surface reconstruction (iPSR) for unoriented points. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 128, 2022.

[11]

Sharf, A.; Lewiner, T.; Shamir, A.; Kobbelt, L.; Cohen-Or, D. Competing fronts for coarse-to-fine surface reconstruction. Computer Graphics Forum Vol. 25, No. 3, 389–398, 2006.

[12]

Lu, W.; Liu, L. Surface reconstruction via cooperative evolutions. Computer Aided Geometric Design Vol. 77, Article No. 101831, 2020.

[13]

Hanocka, R.; Metzer, G.; Giryes, R.; Cohen-Or, D. Point2Mesh: A self-prior for deformable meshes. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 126, 2020.

[14]

Wang, P.; Wang, Z.; Xin, S.; Gao, X.; Wang, W.; Tu, C. Restricted delaunay triangulation for explicit surface reconstruction. ACM Transactions on Graphics Vol. 41, No. 5, Article No. 180, 2022.

[15]

Hanocka, R.; Hertz, A.; Fish, N.; Giryes, R.; Fleishman, S.; Cohen-Or, D. MeshCNN: A network with an edge. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 90, 2019.

[16]
Huang, Z.; Wen, Y.; Wang, Z.; Ren, J.; Jia, K. Surface reconstruction from point clouds: A survey and a benchmark. arXiv preprint arXiv: 2205.02413, 2022.
[17]
You, C. C.; Lim, S. P.; Lim, S. C.; Tan, J. S.; Lee, C. K.; Khaw, Y. M. J. A survey on surface reconstruction techniques for structured and unstructured data. In: Proceedings of the IEEE Conference on Open Systems, 37–42, 2020.
[18]

Öztireli, A. C.; Guennebaud, G.; Gross, M. Feature preserving point set surfaces based on non-linear kernel regression. Computer Graphics Forum Vol. 28, No. 2, 493–501, 2009.

[19]

Avron, H.; Sharf, A.; Greif, C.; Cohen-Or, D. 1-Sparse reconstruction of sharp point set surfaces. ACM Transactions on Graphics Vol. 29, No. 5, Article No. 135, 2010.

[20]

Huang, H.; Wu, S.; Gong, M.; Cohen-Or, D.; Ascher, U.; Zhang, H. R. Edge-aware point set resampling. ACM Transactions on Graphics Vol. 32, No. 1, Article No. 9, 2013.

[21]

Digne, J.; Cohen-Steiner, D.; Alliez, P.; de Goes, F.; Desbrun, M. Feature-preserving surface reconstruction and simplification from defect-laden point sets. Journal of Mathematical Imaging and Vision Vol. 48, No. 2, 369–382, 2014.

[22]
Nan, L.; Wonka, P. PolyFit: Polygonal surface reconstruction from point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, 2353–2361, 2017.
[23]

Dey, T. K.; Ge, X.; Que, Q.; Safa, I.; Wang, L.; Wang, Y. Feature-preserving reconstruction of singular surfaces. Computer Graphics Forum Vol. 31, No. 5, 1787–1796, 2012.

[24]
Daniels, J. Ⅱ, Ha, L. K.; Ochotta, T.; Silva, C. T. Robust smooth feature extraction from point clouds. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, 123–136, 2007.
[25]

Xu, R.; Wang, Z.; Dou, Z.; Zong, C.; Xin, S.; Jiang, M.; Ju, T.; Tu, C. RFEPS: Reconstructing feature-line equipped polygonal surface. ACM Transactions on Graphics Vol. 41, No. 6, Article No. 228, 2022.

[26]
Ohtake, Y.; Belyaev, A.; Seidel, H. P. 3D scattered data approximation with adaptive compactly supported radial basis functions. In: Proceedings of the Shape Modeling Applications, 31–39, 2004.
[27]
Huang, J.; Su, H.; Guibas, L. Robust watertight manifold surface generation method for ShapeNet models. arXiv preprint arXiv: 1802.01698, 2018.
[28]
Monge, G. Mémoire sur la théorie des déblais et des remblais. Paris: De l'Imprimerie Royale, 666–704, 1781.
[29]
Bonneel, N.; van de Panne, M.; Paris, S.; Heidrich, W. Displacement interpolation using Lagrangian mass transport. In: Proceedings of the SIGGRAPH Asia Conference, Article No. 158, 2011.
[30]
Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transport. In: Proceedings of the Advances in Neural Information Processing Systems, 2292–2300, 2013.
[31]

Bonneel, N.; Coeurjolly, D. Spot: Sliced partial optimal transport. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 89, 2019.

[32]

Mandad, M.; Cohen-Steiner, D.; Kobbelt, L.; Alliez, P.; Desbrun, M. Variance-minimizing transport plans for inter-surface mapping. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 39, 2017.

[33]

De Goes, F.; Cohen-Steiner, D.; Alliez, P.; Desbrun, M. An optimal transport approach to robust reconstruction and simplification of 2D shapes. Computer Graphics Forum Vol. 30, No. 5, 1593–1602, 2011.

[34]
Garland, M.; Heckbert, P. S. Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 209–216, 1997.
[35]
Fabri, A.; Pion, S. CGAL: The computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 538–539, 2009.
[36]

Flamary, R.; Courty, N.; Gramfort, A.; Alaya, M. Z.; Boisbunon, A.; Chambon, S.; Chapel, L.; Corenflos, A.; Fatras, K.; Fournier, N.; et al. POT: Python optimal transport. Journal of Machine Learning Research Vol. 22, No. 78, 1–8, 2021.

[37]

Du, Q.; Faber, V.; Gunzburger, M. Centroidal voronoi tessellations: Applications and algorithms. SIAM Review Vol. 41, No. 4, 637–676, 1999.

[38]
Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An open-source mesh processing tool. In: Proceedings of the 6th Eurographics Italian Chapter Conference, 129–136, 2008.
[39]
Cuturi, M.; Doucet, A. Fast computation of Wasserstein barycenters. In: Proceedings of the 31st International Conference on Machine Learning, 685–693, 2014.
Computational Visual Media
Pages 859-858
Cite this article:
Ye Y, Wang Y, Cao J, et al. Watertight surface reconstruction method for CAD models based on optimal transport. Computational Visual Media, 2024, 10(5): 859-858. https://doi.org/10.1007/s41095-023-0355-3
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return