AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article

Quantitative Estimates on the Singular Sets of Alexandrov Spaces

Department of Mathematics, The City University of New York, NYC College of Technology, 300 Jay St., Brooklyn, NY 11201, USA
Department of Mathematics, Northwestern University, 2033 Sheridan Rd., Evanston, IL 60208-2370, USA
Show Author Information

Abstract

Let XAlexn(1) be an n-dimensional Alexandrov space with curvature 1. Let the r-scale (k,ϵ)-singular set Sϵ,rk(X) be the collection of xX so that Br(x) is not ϵr-close to a ball in any splitting space Rk+1×Z. We show that there exists C(n,ϵ)>0 and β(n,ϵ)>0, independent of the volume, so that for any disjoint collection {Bri(xi):xiSϵ,βrik(X)B1,ri1}, the packing estimate rikC holds. Consequently, we obtain the Hausdorff measure estimates Hk(Sϵk(X)B1)C and Hn(Br(Sϵ,rk(X))B1(p))Crnk. This answers an open question in Kapovitch et al. (Metric-measure boundary and geodesic flow on Alexandrov spaces. arXiv: 1705.04767 (2017)). We also show that the k-singular set Sk(X)=ϵ>0(r>0Sϵ,rk) is k-rectifiable and construct examples to show that such a structure is sharp. For instance, in the k=1 case we can build for any closed set TS1 and ϵ>0 a space YAlex3(0) with Sϵ1(Y)=ϕ(T), where ϕ:S1Y is a bi-Lipschitz embedding. Taking T to be a Cantor set it gives rise to an example where the singular set is a 1-rectifiable, 1-Cantor set with positive 1-Hausdorff measure.

References

1
Alexander, S., Kapovitch, V., Petrunin, A.: Alexandrov geometry: preliminary version no. 1. arXiv: 1903.08539 (2019)
2

Burago, Y., Gromov, M., Perel'man, G.: A.D. Alexandrov spaces with curvature bounded below. Uspekhi Mat. Nauk 47(2), 3–51 (1992) (translation in Russian Math. Surveys 47(2),  1–58 (1992))

3

Cheeger, J., Colding, T.: On the structure of spaces with Ricci curvature bounded below I. J. Differ. Geom. 46(3), 406–480 (1997)

4

Cheeger, J., Jiang, W.S., Naber, A.: Rectifiability of singular sets in noncollapsed spaces with Ricci curvature bounded below. arXiv: 1805.07988 (2018)

5

Cheeger, J., Naber, A.: Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math. 191(2), 321–339 (2013)

6

Cheeger, J., Naber, A.: Regularity of Einstein manifolds and the codimension 4 conjecture. Ann. Math. 182(3), 1093–1165 (2015)

7

Greene, R., Wu, H.H.: C approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. Éc. Norm. Supér. 12(1), 47–84 (1979)

8

Kapovitch, V., Lytchak, A., Petrunin, A.: Metric-measure boundary and geodesic flow on Alexandrov spaces. arXiv: 1705.04767 (2017)

9

Lytchak, A., Nagano, K.: Geodesically complete spaces with an upper curvature bound. Geom. Funct. Anal. 29, 295–342 (2019)

10

Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces. J. Differ. Geom. 39, 629–658 (1994)

Peking Mathematical Journal
Pages 203-234
Cite this article:
Li, N., Naber, A. Quantitative Estimates on the Singular Sets of Alexandrov Spaces. Peking Math J 3, 203-234 (2020). https://doi.org/10.1007/s42543-020-00026-2

240

Views

7

Crossref

Altmetrics

Received: 13 December 2019
Revised: 20 June 2020
Accepted: 07 July 2020
Published: 05 October 2020
© Peking University 2020
Return