AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bubble motion and reaction in different viscous liquids

Mark W. Hlawitschka1,3( )P. Kováts2B. Dönmez1K. Zähringer2H.-J. Bart1
TU Kaiserslautern, Chair of Separation Science and Technology (TVT), Gottlieb-Daimler-Str. 44/475, 67663 Kaiserslautern, Germany
Laboratory of Fluid Dynamics and Technical Flows (LSS), Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
JKU Linz, Institute of Process Engineering (IVT), Altenbergerstraße 69, 4040 Linz, Austria
Show Author Information

Abstract

Reactive bubble columns are omnipresent in the chemical industry. The layout of these columns is still limited by correlations and therefore improved simulation techniques are required to describe the complex hydrodynamics/reaction interaction. In this work, we focus on the numerical and experimental study of the viscosity influence on bubble motion and reaction using an Euler-Lagrange framework with an added oscillation and reaction model to bring the column layout base closer to a predictive level. For comparison and validation, experimental data in various water-glycerol solutions was obtained in a cylindrical bubble column at low gas hold-up, where the main parameters such as bubble size, motion, and velocities were detected. Glycerol leads thereby to a change in viscosity and surface tension. Further, the surface tension was modified by addition of a surfactant. The bubble oscillating motion in low to higher viscosity could be described using an Euler-Lagrange framework and enables a description of industrial bubble flows. In addition, the simulations were in good agreement concerning reactive mass transfer investigations at higher viscosity of the liquid which led to an overall lower mass transfer compared to the cases with lower viscosity.

References

 
Antal, S. P., Lahey Jr., R. T., Flaherty, J. E. 1991. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiphase Flow, 17: 635-652.
 
Aybers, N. M., Tapucu, A. 1969. The motion of gas bubbles rising through stagnant liquid. Wärme-Und Stoffübertragung, 2: 118-128.
 
Besagni, G., Inzoli, F., de Guido, G., Pellegrini, L. A. 2017. The dual effect of viscosity on bubble column hydrodynamics. Chem Eng Sci, 158: 509-538.
 
Bhole, M. R., Joshi, J. B., Ramkrishna, D. 2008. CFD simulation of bubble columns incorporating population balance modeling. Chem Eng Sci, 63: 2267-2282.
 
Bird, R. B., Stewart, W. E., Lightfoot, E. N. 2006. Transport Phenomena, Revised 2nd Edition. New York: Wiley.
 
Chappelear, J. E. 1961. Direct numerical calculation of wave properties. J Geophys Res, 66: 501-508.
 
Coulaloglou, C. A., Tavlarides, L. L. 1977. Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci, 32: 1289-1297.
 
Darmana, D., Henket, R. L. B., Deen, N. G., Kuipers, J. A. M. 2007. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study. Chem Eng Sci, 62: 2556-2575.
 
De Azevedo, M. B., Santos, D. D., Faccini, J. L. H., Su, J. 2017. Experimental study of the falling film of liquid around a Taylor bubble. Int J Multiphase Flow, 88: 133-141.
 
Deen, N. G., van Sint Annaland, M., Kuipers, J. A. M. 2004. Multi-scale modeling of dispersed gas-liquid two-phase flow. Chem Eng Sci, 59: 1853-1861.
 
Delnoij, E., Lammers, F. A., Kuipers, J. A. M., van Swaaij, W. P. M. 1997. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chem Eng Sci, 52: 1429-1458.
 
Dijkhuizen, W., Roghair, I., van Sint Annaland, M., Kuipers, J. A. M. 2010. DNS of gas bubbles behaviour using an improved 3D front tracking model—Drag force on isolated bubbles and comparison with experiments. Chem Eng Sci, 65: 1415-1426.
 
Gong, X., Takagi, S., Huang, H., Matsumoto, Y. 2007. A numerical study of mass transfer of ozone dissolution in bubble plumes with an Euler-Lagrange method. Chem Eng Sci, 62: 1081-1093.
 
Gruber, M. C., Radl, S., Khinast, J. G. 2013. Coalescence and break-up in bubble columns: Euler-Lagrange simulations using a stochastic approach. Chem Ing Tech, 85: 1118-1130.
 
Gruber, M. C., Radl, S., Khinast, J. G. 2015. Rigorous modeling of CO2 absorption and chemisorption: The influence of bubble coalescence and breakage. Chem Eng Sci, 137: 188-204.
 
Hlawitschka, M. W., Kováts, P., Zähringer, K., Bart, H.-J. 2017. Simulation and experimental validation of reactive bubble column reactors. Chem Eng Sci, 170: 306-319.
 
Hlawitschka, M. W., Lichti, M., Bart, H.-J. 2014. Multi-scale investigations of reactive bubble columns. In: Proceedings of the 2nd International Symposium on Multiscale Multiphase Process Engineering.
 
Hlawitschka, M. W., Schäfer, J., Hummel, M., Garth, C., Bart, H.-J. 2016. Populationsbilanzmodellierung mit einem Mehrphasen- CFD-Code und vergleichende Visualisierung. Chem Ing Tech, 88: 1480-1491.
 
Jeffery, G. B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A, 102: 161-179.
 
Junk, M., Illner, R. 2007. A new derivation of Jeffery’s equation. J Math Fluid Mech, 9: 455-488.
 
Kajero, O. T., Azzopardi, B. J., Abdulkareem, L. 2012. Experimental investigation of the effect of liquid viscosity on slug flow in small diameter bubble column. EPJ Web of Conferences, 25: 01037.
 
Kováts, P., Thévenin, D., Zähringer, K. 2020. Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column. Int J Multiphase Flow, 123: 103174.
 
Kulkarni, A. A., Joshi, J. B. 2005. Bubble formation and bubble rise velocity in gas-liquid systems: A review. Ind Eng Chem Res, 44: 5873-5931.
 
Lahey Jr., R. T., Lopez de Bertodano, M., Jones Jr., O. C. 1993. Phase distribution in complex geometry conduits. Nucl Eng Des, 141: 177-201.
 
Lain, S., Bröder, D., Sommerfeld, M. 1999. Experimental and numerical studies of the hydrodynamics in a bubble column. Chem Eng Sci, 54: 4913-4920.
 
Lau, Y. M., Bai, W., Deen, N. G., Kuipers, J. A. M. 2014. Numerical study of bubble break-up in bubbly flows using a deterministic Euler-Lagrange framework. Chem Eng Sci, 108: 9-22.
 
Lau, Y. M., Roghair, I., Deen, N. G., van Sint Annaland, M., Kuipers, J. A. M. 2011. Numerical investigation of the drag closure for bubbles in bubble swarms. Chem Eng Sci, 66: 3309-3316.
 
Launder, B. E., Spalding, D. B. 1972. Mathematical Models of Turbulence. London: Academic Press.
 
Laupsien, D., Cockx, A., Line, A. 2017. Bubble plume oscillations in viscous fluids. Chem Eng Technol, 40: 1484-1493.
 
Lichti, M., Bart, H.-J. 2017. Partikelmesstechnik in der Fluidverfahrenstechnik. Chem Ing Tech, 89: 1599-1610.
 
Liu, L., Yan, H., Zhao, G. 2015. Experimental studies on the shape and motion of air bubbles in viscous liquids. Exp Therm Fluid Sci, 62: 109-121.
 
Lörstad, D., Fuchs, L. 2004. High-order surface tension VOF-model for 3D bubble flows with high density ratio. J Comput Phys, 200: 153-176.
 
Mougin, G., Magnaudet, J. 2006. Wake-induced forces and torques on a zigzagging/spiralling bubble. J Fluid Mech, 567: 185-194.
 
Mühlbauer, A., Hlawitschka, M. W., Bart, H.-J. 2019. Models for the numerical simulation of bubble columns: A review. Chem Ing Tech, 91: 1747-1765.
 
Pesci, C., Weiner, A., Marschall, H., Bothe, D. 2018. Computational analysis of single rising bubbles influenced by soluble surfactant. J Fluid Mech, 856: 709-763.
 
Petitti, M., Nasuti, A., Marchisio, D. L., Vanni, M., Baldi, G., Mancini, N., Podenzani, F. 2010. Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm. AIChE J, 56: 36-53.
 
Renze, P., Buffo, A., Marchisio, D. L., Vanni, M. 2014. Simulation of coalescence, breakup, and mass transfer in polydisperse multiphase flows. Chem Ing Tech, 86: 1088-1098.
 
Rusche, H. 2002. Computational fluid dynamics of dispersed two- phase flows at high phase fractions. Ph.D. Thesis. Imperial College of Science, London, UK.
 
Rzehak, R., Krepper, E. 2013. Bubble-induced turbulence: Comparison of CFD models. Nucl Eng Des, 258: 57-65.
 
Schäfer, J., Hlawitschka, M. W., Attarakih, M. M., Bart, H.-J. 2019. Experimental investigation of local bubble properties: Comparison to the sectional quadrature method of moments. AIChE J., 65: 227.
 
Shams, E., Finn, J., Apte, S. V. 2011. A numerical scheme for Euler-Lagrange simulation of bubbly flows in complex systems. Int J Numer Meth Fluids, 67: 1865-1898.
 
Sharaf, D. M., Premlata, A. R., Tripathi, M. K., Karri, B., Sahu, K. C. 2017. Shapes and paths of an air bubble rising in quiescent liquids. Phys Fluids, 29: 122104.
 
Shew, W. L., Pinton, J.-F. 2006. Viscoelastic effects on the dynamics of a rising bubble. J Stat Mech, 2006: P01009
 
Simonnet, M., Gentric, C., Olmos, E., Midoux, N. 2008. CFD simulation of the flow field in a bubble column reactor: Importance of the drag force formulation to describe regime transitions. Chem Eng Process: Process Intensif, 47: 1726-1737.
 
Smith, B. L., Milelli, M. 1998. An investigation of confined bubble plumes. In: Proceedings of the 3rd International Conference of Multiphase Flow.
 
Sokolichin, A., Eigenberger, G., Lapin, A., Lübert, A. 1997. Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange. Chem Eng Sci, 52: 611-626.
 
Sommerfeld, M., Bourloutski, E., Bröder, D. 2008. Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence. Can J Chem Eng, 81: 508-518.
 
Sommerfeld, M., Muniz, M., Reichardt, T. 2018. On the importance of modelling bubble dynamics for point-mass numerical calculations of bubble columns. J Chem Eng Jpn, 51: 301-317.
 
Tomiyama, A. 2002. Single bubbles in stagnant liquids and in linear shear flows. In: Proceedings of the Workshop on Measurement Techniques for Steady and Transient Multiphase Flows.
 
Tomiyama, A. 2004. Drag, lift and virtual mass force acting on a single bubble. In: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation.
 
Urseanu, M. I., Guit, R. P. M., Stankiewicz, A., van Kranenburg, G., Lommen, J. H. G. M. 2003. Influence of operating pressure on the gas hold-up in bubble columns for high viscous media. Chem Eng Sci, 58: 697-704.
 
Wang, T., Wang, J., Jin, Y. 2006. A CFD-PBM coupled model for gas-liquid flows. AIChE J, 52: 125-140.
 
Weber, A. 2018. Simulating bubble movement with the Euler- Lagrange approach. Ph.D. Thesis. TU Kaiserslautern, Germany.
 
Weber, A., Bart, H.-J. 2018. Flow simulation in a 2D bubble column with the Euler-Lagrange and Euler-Euler method. Open Chem Eng J, 12: 1-13.
 
Wilkinson, P. M., Dierendonck, L. L. v. 1990. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns. Chem Eng Sci, 45: 2309-2315.
Experimental and Computational Multiphase Flow
Pages 26-38
Cite this article:
Hlawitschka MW, Kováts P, Dönmez B, et al. Bubble motion and reaction in different viscous liquids. Experimental and Computational Multiphase Flow, 2022, 4(1): 26-38. https://doi.org/10.1007/s42757-020-0072-4

781

Views

11

Downloads

19

Crossref

20

Web of Science

18

Scopus

Altmetrics

Received: 28 February 2020
Revised: 07 April 2020
Accepted: 16 April 2020
Published: 21 October 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return