AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (932.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize

Ao Zhanga,b,cPaulino Pérez-RodríguezdFelix San VicentebNatalia Palacios-RojasbThanda DhliwayobYubo Liuc,eZhenhai CuiaYuan Guanc,eHui Wangc,eHongjian Zhengc,eMichael OlsenfBoddupalli M. PrasannafYanye Ruana( )Jose Crossab( )Xuecai Zhangb( )
College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 200063, China
Colegio de Postgraduados, Estado De México, Mexico
Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 200063, China
International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi 00621, Kenya
Show Author Information

Abstract

The two most important activities in maize breeding are the development of inbred lines with high values of general combining ability (GCA) and specific combining ability (SCA), and the identification of hybrids with high yield potentials. Genomic selection (GS) is a promising genomic tool to perform selection on the untested breeding material based on the genomic estimated breeding values estimated from the genomic prediction (GP). In this study, GP analyses were carried out to estimate the performance of hybrids, GCA, and SCA for grain yield (GY) in three maize line-by-tester trials, where all the material was phenotyped in 10 to 11 multiple-location trials and genotyped with a mid-density molecular marker platform. Results showed that the prediction abilities for the performance of hybrids ranged from 0.59 to 0.81 across all trials in the model including the additive effect of lines and testers. In the model including both additive and non-additive effects, the prediction abilities for the performance of hybrids were improved and ranged from 0.64 to 0.86 across all trials. The prediction abilities of the GCA for GY were low, ranging between − 0.14 and 0.13 across all trials in the model including only inbred lines; the prediction abilities of the GCA for GY were improved and ranged from 0.49 to 0.55 across all trials in the model including both inbred lines and testers, while the prediction abilities of the SCA for GY were negative across all trials. The prediction abilities for GY between testers varied from − 0.66 to 0.82; the performance of hybrids between testers is difficult to predict. GS offers the opportunity to predict the performance of new hybrids and the GCA of new inbred lines based on the molecular marker information, the total breeding cost could be reduced dramatically by phenotyping fewer multiple-location trials.

References

[1]

N. Poole, J. Donovan, O. Erenstein, Viewpoint: agri-nutrition research: revisiting the contribution of maize and wheat to human nutrition and health, Food Policy 100 (2020) 101976.

[2]
A.R. Hallauer, M.J. Carena, J.B. Miranda Filho, Quantitative Genetics in Maize Breeding, Springer, New York, NY, USA, 2010.
[3]

G.F. Sprague, L.A. Tatum, General vs. specific combining ability in single crosses of corn, Agron. J. (1942) 923-932.

[4]

W.S. Rezende, Y. Beyene, S. Mugo, E. Ndou, M. Gowda, J.P. Sserumaga, G. Asea, I. Ngolinda, M. Jumbo, S.O. Oikeh, M. Olsen, A. Borém, C.D. Cruz, B.M. Prasanna, Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa, Crop J. 8 (2020) 107-118.

[5]

B.M. Prasanna, V. Chaikam, G. Mahuku, Doubled Haploid Technology in Maize Breeding: Theory and Practice, CIMMYT, Mexico, 2012

[6]

X. Wang, Z. Zhang, Y. Xu, P. Li, X. Zhang, C. Xu, Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize, Crop J. 5 (2020) 819-829.

[7]

N. Wang, H. Wang, A. Zhang, Y. Liu, D. Yu, Z. Hao, D. Ilut, J.C. Glaubitz, Y. Gao, E. Jones, M. Olsen, X. Li, F. San Vicente, B.M. Prasanna, J. Crossa, P. Pérez-Rodríguez, X. Zhang, Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing, Theor. Appl. Genet. 133 (2020) 2869-2879.

[8]
O. Kempthorne, An Introduction to Genetic Statistics, John Wiley and Sons Inc, New York, NY, USA, 1957.
[9]

J.B. Miranda Filho, R. Vencovsky, The partial circulant diallel cross at the interpopulation level, Genet. Mol. Biol. (1999) 249-255.

[10]

T.H. Meuwissen, B.J. Hayes, M.E. Goddard, Prediction of total genetic value using genome-wide dense marker maps, Genetics 157 (2001) 1819-1829.

[11]

J. Crossa, P. Pérez, J. Hickey, J. Burgueño, L. Ornella, J. Cerón-Rojas, X. Zhang, S. Dreisigacker, R. Babu, Y. Li, D. Bonnett, K. Mathews, Genomic prediction in CIMMYT maize and wheat breeding programs, Heredity 112 (2014) 48-60.

[12]

J. Crossa, P. Pérez-Rodríguez, J. Cuevas, O. Montesinos-López, D. Jarquín, G. de, los, Campos, J. Burgueño, J.M. González-Camacho, S. Pérez-Elizalde, Y. Beyene, S. Dreisigacker, R. Singh, X. Zhang, M. Gowda, M. Roorkiwal, J. Rutkoski, R.K. Varshney, Genomic selection in plant breeding: methods, models, and perspectives, Trends Plant Sci. 11 (2017) 961-975.

[13]

R. Guo, T. Dhliwayo, E.K. Mageto, N. Palacios-Rojas, M. Lee, D. Yu, Y. Ruan, A. Zhang, F. San Vicente, M. Olsen, J. Crossa, B.M. Prasanna, L. Zhang, X. Zhang, Genomic prediction of kernel zinc concentration in multiple maize populations using genotyping-by-sequencing and repeat amplification aequencing markers, Front. Plant Sci. 11 (2020) 534.

[14]

S. Cao, A. Loladze, Y. Yuan, Y. Wu, A. Zhang, J. Chen, G. Huestis, J. Cao, V. Chaikam, M. Olsen, B.M. Prasanna, F. San Vicente, X. Zhang, Genome-wide analysis of tar spot complex resistance in maize using genotyping-by-sequencing SNPs and whole-genome prediction, Plant Genome 10 (2017), https://doi.org/10.3835/plantgenome2016.10.0099.

[15]

Y. Liu, G. Hu, A. Zhang, A. Loladze, Y. Hu, H. Wang, J. Qu, X. Zhang, M. Olsen, F. San Vicente, J. Crossa, F. Lin, B.M. Prasanna, Genome-wide association study and genomic prediction of fusarium ear rot resistance in tropical maize germplasm, Crop J. 9 (2021) 325-341.

[16]

T. Albrecht, V. Wimmer, H.J. Auinger, M. Erbe, C. Knaak, M. Ouzunova, H. Simianer, C.C. Schön, Genome-based prediction of testcross values in maize, Theor. Appl. Genet. 123 (2011) 339-350.

[17]

T. Albrecht, H.J. Auinger, V. Wimmer, J.O. Ogutu, C. Knaak, M. Ouzunova, H.P. Piepho, C.C. Schön, Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years, Theor. Appl. Genet. 127 (2014) 1375-1386.

[18]

J.B. Endelman, Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP, Plant Genome 4 (2011) 250-255.

[19]

X. Wang, Y. Xu, Z. Hu, C. Xu, Genomic selection methods for crop improvement: current status and prospects, Crop J. 6 (2018) 330-340.

[20]

X. Zhang, P. Pérez-Rodríguez, K. Semagn, Y. Beyene, R. Babu, M.A. López-Cruz, F. San Vicente, M. Olsen, E. Buckler, J.L. Jannink, B.M. Prasanna, J. Crossa, Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs, Heredity 114 (2015) 291-299.

[21]

M. Ali, L. Zhang, I. DeLacy, V. Arief, M. Dieters, W.H. Pfeiffer, J. Wang, H. Li, Modeling and simulation of recurrent phenotypic and genomic selections in plant breeding under the presence of epistasis, Crop J. 8 (2020) 866-877.

[22]

C. Nyaga, M. Gowda, Y. Beyene, W.T. Murithi, J. Burgueno, F. Toledo, D. Makumbi, M.S. Olsen, B. Das, L.M. Suresh, J.M. Bright, B.M. Prasanna, Hybrid breeding for MLN resistance: heterosis, combining ability, and hybrid prediction, Plants 9 (2020) 468.

[23]

M. Vélez-Torres, J.J. García-Zavala, M. Hernández-Rodríguez, R. Lobato-Ortiz, J.J. López-Reynoso, I. Benítez-Riquelme, J.A. Mejía-Contreras, G. Esquivel-Esquivel, J.D. Molina-Galán, P. Pérez-Rodríguez, X. Zhang, Genomic prediction of the general combining ability of maize lines (Zea mays L.) and the performance of their single crosses, Plant Breed. 137 (2018) 379-387.

[24]

G. Alvarado, F.M. Rodríguez, A. Pacheco, J. Burgueño, J. Crossa, M. Vargas, P. Pérez-Rodríguez, M.A. Lopez-Cruz, META-R: A software to analyze data from multi-environment plant breeding trials, Crop J. 5 (2020) 745-756.

[25]

J. Chen, C. Zavala, N. Ortega, C. Petroli, J. Franco, J. Burgueño, D.E. Costich, S.J. Hearne, The development of quality control genotyping approaches: a case study using elite maize lines, PLoS ONE 11 (2016) e0157236.

[26]

P.J. Bradbury, Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, E.S. Buckler, TASSEL: Software for association mapping of complex traits in diverse samples, Bioinformatics 23 (2007) 2633-2635.

[27]

Z. Hao, D. Lv, Y. Ge, J. Shi, D. Weijers, G. Yu, J. Chen, RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms, PeerJ Comput Sci. 6 (2020) e251.

[28]
R Core Team, R: a language and environment for statistical computing, R Found, Stat Comput, Vienna, Austria, 2019.
[29]

B.R. Basnet, J. Crossa, S. Dreisigacker, P. Pérez-Rodríguez, Y. Manes, R.P. Singh, U.R. Rosyara, F. Camarillo-Castillo, M. Murua, Hybrid wheat prediction using genomic, pedigree, and environmental covariables interaction models, Plant Genome 12 (2019) 180051.

[30]

P.M. VanRaden, Efficient methods to compute genomic predictions, J. Dairy Sci. 91 (2008) 4414-4423.

[31]

F. Technow, T.A. Schrag, W. Schipprack, E. Bauer, H. Simianer, A.E. Melchinger, Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize, Genetics 197 (2014) 1343-1355.

[32]

P. Pérez, G., De Los Campos, Genome-wide regression and prediction with the BGLR statistical package, Genetics 198 (2014) 483-495.

[33]

X. Zhang, P. Pérez-Rodríguez, J. Burgueño, M. Olsen, E. Buckler, G. Atlin, B.M. Prasanna, M. Vargas, F. San Vicente, J. Crossa, Rapid cycling genomic selection in a multiparental tropical maize population, G3-Genes Genomes Genet. 7 (2017) 2315-2326.

[34]

N. Wang, Y. Yuan, H. Wang, D. Yu, Y. Liu, A. Zhang, M. Gowda, S.K. Nair, Z. Hao, Y. Lu, F. San Vicente, B.M. Prasanna, X. Li, X. Zhang, Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding, Sci. Rep. 10 (2020) 16308.

[35]

Y. Beyene, M. Gowda, M.S. Olsen, K.R. Robbins, P. Pérez-Rodríguez, G. Alvarado, K. Dreher, Y. Gao, S. Mugo, B.M. Prasanna, J. Crossa, Empirical comparison of tropical maize hybrids selected through genomic and phenotypic selections, Front Plant Sci. 10 (2019) 1502.

The Crop Journal
Pages 109-116
Cite this article:
Zhang A, Pérez-Rodríguez P, San Vicente F, et al. Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize. The Crop Journal, 2022, 10(1): 109-116. https://doi.org/10.1016/j.cj.2021.04.007

327

Views

2

Downloads

11

Crossref

10

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 15 November 2020
Revised: 19 February 2021
Accepted: 15 May 2021
Published: 02 June 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return