AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Demographic changes in China's forests from 1998 to 2018

Yanli DongaEvgenios AgathokleousaShirong LiubZhen Yua,b,c,d( )
Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Show Author Information

Abstract

Background

Tree demography is an essential indicator of various forest ecosystem services, and understanding its changes is critical for the sustainable management of forests. During the past four decades, China implemented unprecedented forest restoration projects, which altered tree demography by increasing the number of trees and introducing new species. However, it remains unclear how species composition has changed in China in response to the past forest restoration and demographical processes.

Methods

We applied Forest Stability Index (FSI) and the relative change of FSI (%FSI) to describe the population dynamics of tree species and structure in China since 1998, using field-survey data collected from over 200,000 plot-records from the 6th to 9th National Forest Inventories (NFIs).

Results

The overall populations of both natural and planted forests have grown rapidly from 1998 to 2018, while the range of changes in the relative tree density was more variable for natural forests (ranging from −8.53% to 42.46%) than for planted forests (ranging from −1.01% to 13.31%). The populations declined only in some of the tree species, including Betula platyphylla, Ulmus pumila, and Robinia pseudoacacia. In contrast, the populations of trees in the largest size-class either remained stable or expanded.

Conclusions

Tree density of China's forests (both natural and planted forests) generally expanded and the overall populations increased in most size classes, with greater increases occurred in planted forests. In contrasting to the global decline trends of large diameter trees, here we found no apparent decline for trees in the largest size-class in China, highlighting China's success in improving forest health and forest adaptations to climate change. We advocate for more studies to reveal the mechanisms of the changes in tree demography, which will help to improve forest ecosystem services such as the carbon sequestration capacity.

References

 

Aakala, T., 2018. Forest fire histories and tree age structures in varrio and maltio strict nature reserves, Northern Finland. Boreal Environ. Res. 23, 209–219.

 

Anderegg, W.R.L., Chegwidden, O.S., Badgley, G., Trugman, A.T., Cullenward, D., Abatzoglou, J.T., Hicke, J.A., Freeman, J., Hamman, J.J., 2022. Future climate risks from stress, insects and fire across US forests. Ecol. Lett. 25, 1510–1520. https://doi.org/10.1111/ele.14018.

 

Anderegg, W.R.L., Kane, J.M., Anderegg, L.D.L., 2013. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36. https://doi.org/10.1038/nclimate1635.

 

Barr, C., Cossalter, C., 2004. China's development of a plantation-based industry: government policies, financial incentives, and investment trends. Int. For. Rev. 6, 267–281. https://doi.org/10.1505/ifor.6.3.267.59977.

 

Bonan, G.B., 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449. https://doi.org/10.1126/science.1155121.

 

Bradford, J.B., Birdsey, R.A., Joyce, L.A., Ryan, M.G., 2008. Tree age, disturbance history, and carbon stocks and fluxes in Subalpine Rocky Mountain forests. Global Change Biol. 14, 2882–2897. https://doi.org/10.1111/j.1365-2486.2008.01686.x.

 

Chen, T., Lou, A., 2019. Phylogeography and paleodistribution models of a widespread birch (Betula platyphylla Suk.) across East Asia: multiple refugia, multidirectional expansion, and heterogeneous genetic pattern. Ecol. Evol. 9, 7792–7807. https://doi.org/10.1002/ece3.5365.

 

Chirici, G., McRoberts, R.E., Winter, S., Bertini, R., Brändli, U.B., Asensio, I.A., Bastrup-Birk, A., Rondeux, J., Barsoum, N., Marchetti, M., 2012. National forest inventory contributions to forest biodiversity monitoring. For. Sci. 58, 257–268. https://doi.org/10.5849/forsci.12-003.

 

Chu, C., Weiner, J., Maestre, F., Wang, Y., Morris, C., Xiao, S., Yuan, J., Du, G., Wang, G., 2010. Effects of positive interactions, size symmetry of competition and abiotic stress on self-thinning in simulated plant populations. Ann. Bot. 106, 647–652. https://doi.org/10.1093/aob/mcq145.

 
CierjacksA.KowarikI.JoshiJ.HempelS.RistowM.von der LippeM.WeberE.Biological flora of the British Isles: Robinia pseudoacaciaJ. Ecol.20131011623164010.1111/1365-2745.12162

Cierjacks, A., Kowarik, I., Joshi, J., Hempel, S., Ristow, M., von der Lippe, M., Weber, E., 2013. Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol. 101, 1623–1640. https://doi.org/10.1111/1365-2745.12162.

 

Clark, J.S., Bell, D.M., Hersh, M.H., Nichols, L., 2011. Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates. Global Change Biol. 17, 1834–1849. https://doi.org/10.1111/j.1365-2486.2010.02380.x.

 

Cornelius, S., Dirk, P., Yang, Z.Q., Julius, S., Jan, K., Mathias, N., Patrick, H., Rupert, S., 2018. Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nat. Commun. 9, 4978. https://doi.org/10.1038/s41467-018-07539-6.

 

De Marco, A., Sicard, P., Feng, Z., Agathokleous, E., Alonso, R., Araminiene, V., Augustatis, A., Badea, O., Beasley, J.C., Branquinho, C., Bruckman, V.J., Collalti, A., David-Schwartz, R., Domingos, M., Du, E., Gomez, H.G., Hashimoto, S., Hoshika, Y., Jakovljevic, T., McNulty, S., Oksanen, E., Khaniabadi, Y.O., Prescher, A.K., Saitanis, C.J., Sase, H., Schmitz, A., Voigt, G., Watanabe, M., Wood, M.D., Kozlov, M.V., Paoletti, E., 2022. Strategic roadmap to assess forest vulnerability under air pollution and climate change. Global Change Biol. 28, 5062–5085. https://doi.org/10.1111/gcb.16278.

 

DeSiervo, M.H., Jules, E.S., Bost, D.S., De Stigter, E.L., Butz, R.J., 2018. Patterns and drivers of recent tree mortality in diverse conifer forests of the Klamath Mountains, California. For. Sci. 64, 371–382. https://doi.org/10.1093/forsci/fxx022.

 

Drake, J.E., Davis, S.C., Raetz, L.M., DeLucia, E.H., 2011. Mechanisms of age-related changes in forest production: the influence of physiological and successional changes. Global Change Biol. 17, 1522–1535. https://doi.org/10.1111/j.1365-2486.2010.02342.x.

 
Drake, J.M., 2004. Stochastic Population Dynamics in Ecology and Conservation. OxfordUniversity Press, Oxford.
 

Eamus, D., Boulain, N., Cleverly, J., Breshears, D.D., 2013. Global change-type droughtinduced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3, 2711–2729. https://doi.org/10.1002/ece3.664.

 
HalpinC.R.LorimerC.G.A demographic approach to evaluating tree population sustainabilityForests201784610.3390/f8020046

Halpin, C.R., Lorimer, C.G., 2017. A demographic approach to evaluating tree population sustainability. Forests 8, 46. https://doi.org/10.3390/f8020046.

 

He, L., Chen, J., Pan, Y., Birdsey, R., Kattge, J., 2012. Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochem. Cycles 26, GB3009. https://doi.org/10.1029/2010gb003942.

 

Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji, M., Lin, L., Wang, S., Yan, H., Wang, G., 2017. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778. https://doi.org/10.1002/2016rg000550.

 

Huang, J., Ma, J., Guan, X., Li, Y., He, Y., 2019. Progress in semi-arid climate change studies in China. Adv. Atmos. Sci. 36, 922–937. https://doi.org/10.1007/s00376-018-8200-9.

 

Huang, W., Zhou, G., Deng, X., Liu, J., Duan, H., Zhang, D., Chu, G., Liu, S., 2015. Nitrogen and phosphorus productivities of five subtropical tree species in response to elevated CO2 and N addition. Eur. J. For. Res. 134, 845–856. https://doi.org/10.1007/s10342-015-0894-y.

 
LiC.WangJ.HuL.YuL.ClintonN.HuangH.YangJ.GongP.A circa 2010 thirty meter resolution forest map for ChinaRem. Sens.201465325534310.3390/rs606532510.3390/rs6065325

Li, C., Wang, J., Hu, L., Yu, L., Clinton, N., Huang, H., Yang, J., Gong, P., 2014. A circa2010 thirty meter resolution forest map for China. Rem. Sens. 6, 5325–5343. https://doi.org/10.3390/rs6065325.

 

Lindenmayer, D.B., Laurance, W.F., Franklin, J.F., 2012. Global decline in large old trees. Science 338, 1305–1306. https://doi.org/10.1126/science.1231070.

 

Lintz, H.E., Gray, A.N., Yost, A., Sniezko, R., Woodall, C., Reilly, M., Hutten, K., Elliott, M., 2016. Quantifying density-independent mortality of temperate tree species. Ecol. Indicat. 66, 1–9. https://doi.org/10.1016/j.ecolind.2015.11.011.

 

Liu, H., Williams, A.P., Allen, C.D., Guo, D., Wu, X., Anenkhonov, O.A., Liang, E., Sandanov, D.V., Yin, Y., Qi, Z., Badmaeva, N.K., 2013. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biol. 19, 2500–2510. https://doi.org/10.1111/gcb.12217.

 

Liu, J., Du, H., Wu, Z., He, H., Wang, L., Zong, S., 2017. Recent and future changes in the combination of annual temperature and precipitation throughout China. Int. J. Climatol. 37, 821–833. https://doi.org/10.1002/joc.4742.

 

Liu, J., Li, S., Ouyang, Z., Tam, C., Chen, X., 2008. Ecological and socioeconomic effects of China's policies for ecosystem services. Proc. Natl. Acad. Sci. USA 105, 9477–9482. https://doi.org/10.1073/pnas.0706436105.

 

Lu, F., Hu, H., Sun, W., Zhu, J., Liu, G., Zhou, W., Zhang, Q., Shi, P., Liu, X., Wu, X., Zhang, L., Wei, X., Dai, L., Zhang, K., Sun, Y., Xue, S., Zhang, W., Xiong, D., Deng, L., Liu, B., Zhou, L., Zhang, C., Zheng, X., Cao, J., Huang, Y., He, N., Zhou, G., Bai, Y., Xie, Z., Tang, Z., Wu, B., Fang, J., Liu, G., Yu, G., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 115, 4039–4044. https://doi.org/10.1073/pnas.1700294115.

 

Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., AndersonTeixeira, K.J., Andrade, A., Baltzer, J., Becker, K.M.L., Blomdahl, E.M., Bourg, N.A., Bunyavejchewin, S., Burslem, D., Cansler, C.A., Cao, K., Cao, M., Cardenas, D., Chang, L.W., Chao, K.J., Chao, W.C., Chiang, J.M., Chu, C., Chuyong, G.B., Clay, K., Condit, R., Cordell, S., Dattaraja, H.S., Duque, A., Ewango, C.E.N., Fischer, G.A., Fletcher, C., Freund, J.A., Giardina, C., Germain, S.J., Gilbert, G.S., Hao, Z., Hart, T., Hau, B.C.H., He, F., Hector, A., Howe, R.W., Hsieh, C.F., Hu, Y.H., Hubbell, S.P., Inman-Narahari, F.M., Itoh, A., Janik, D., Kassim, A.R., Kenfack, D., Korte, L., Kral, K., Larson, A.J., Li, Y., Lin, Y., Liu, S., Lum, S., Ma, K., Makana, J.R., Malhi, Y., McMahon, S.M., McShea, W.J., Memiaghe, H.R., Mi, X., Morecroft, M., Musili, P.M., Myers, J.A., Novotny, V., Oliveira, A., Ong, P., Orwig, D.A., Ostertag, R., Parker, G.G., Patankar, R., Phillips, R.P., Reynolds, G., Sack, L., Song, G.Z.M., Su, S.H., Sukumar, R., Sun, I.F., Suresh, H.S., Swanson, M.E., Tan, S., Thomas, D.W., Thompson, J., Uriarte, M., Valencia, R., Vicentini, A., Vrska, T., Wang, X., Weiblen, G.D., Wolf, A., Wu, S.H., Xu, H., Yamakura, T., Yap, S., Zimmerman, J.K., 2018. Global importance of large-diameter trees. Global Ecol. Biogeogr. 27, 849–864. https://doi.org/10.1111/geb.12747.

 

Ma, L., Lian, J., Lin, G., Cao, H., Huang, Z., Guan, D., 2016. Forest dynamics and its driving forces of sub-tropical forest in South China. Sci. Rep. 6, 22561. https://doi.org/10.1038/srep22561.

 

Ma, Z., Hartmann, H., Wang, H., Li, Q.K., Wang, Y., Li, S., 2014. Carbon dynamics and stability between native Masson pine and exotic slash pine plantations in subtropical China. Eur. J. For. Res. 133, 307–321. https://doi.org/10.1007/s10342-013-0763-5.

 

McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L., Clark, J.S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G.C., Jackson, R.B., Johnson, D.J., Kueppers, L., Lichstein, J.W., Ogle, K., Poulter, B., Pugh, T.A.M., Seidl, R., Turner, M.G., Uriarte, M., Walker, A.P., Xu, C., 2020. Pervasive shifts in forest dynamics in a changing world. Science 368, 963–965. https://doi.org/10.1126/science.aaz9463.

 

McDowell, N.G., Sapes, G., Pivovaroff, A., Adams, H.D., Allen, C.D., Anderegg, W.R.L., Arend, M., Breshears, D.D., Brodribb, T., Choat, B., Cochard, H., De Caceres, M., De Kauwe, M.G., Grossiord, C., Hammond, W.M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., Mackay, D.S., Mantova, M., Martinez-Vilalta, J., Medlyn, B.E., Mencuccini, M., Nardini, A., Oliveira, R.S., Sala, A., Tissue, D.T., Torres-Ruiz, J.M., Trowbridge, A.M., Trugman, A.T., Wiley, E., Xu, C., 2022. Mechanisms of woodyplant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308. https://doi.org/10.1038/s43017-022-00272-1.

 

Moreno, A., Neumann, M., Hasenauer, H., 2018. Climate limits on European forest structure across space and time. Global Planet. Change 169, 168–178. https://doi.org/10.1016/j.gloplacha.2018.07.018.

 

Payn, T., Carnus, J.M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., Rodriguez, L., Silva, L.N., Wingfield, M.J., 2015. Changes in planted forests and future global implications. For. Ecol. Manag. 352, 57–67. https://doi.org/10.1016/j.foreco.2015.06.021.

 

Piao, S., Fang, J., Ciais, P., Peylin, P., Huang, Y., Sitch, S., Wang, T., 2009. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1082. https://doi.org/10.1038/nature07944.

 
PretzschH.BiberP.A re-evaluation of Reineke's rule and stand density indexFor. Sci.200551304320

Pretzsch, H., Biber, P., 2005. A re-evaluation of Reineke's rule and stand density index. For. Sci. 51, 304–320.

 
ReinekeL.H.Perfecting a stand-density index for even-aged forestsJ. Agric. Res.193346627638

Reineke, L.H., 1933. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46, 627–638.

 
ReynoldsJ.H.FordE.D.Improving competition representation in theoretical models of self-thinning: a critical reviewJ. Ecol.20059336237210.1111/j.1365-2745.2005.00976.x10.1111/j.1365-2745.2005.00976.x

Reynolds, J.H., Ford, E.D., 2005. Improving competition representation in theoretical models of self-thinning: a critical review. J. Ecol. 93, 362–372. https://doi.org/10.1111/j.1365-2745.2005.00976.x.

 

Senf, C., Pflugmacher, D., Yang, Z.Q., Sebald, J., Knorn, J., Neumann, M., Hostert, P., Seidl, R., 2018. Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nat. Commun. 9, 4978. https://doi.org/10.1038/s41467-018-07539-6.

 

Simler-Williamson, A.B., Rizzo, D.M., Cobb, R.C., 2019. Interacting effects of global change on forest pest and pathogen dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 381–403. https://doi.org/10.1146/annurev-ecolsys-110218-024934.

 

Stanke, H., Finley, A.O., Domke, G.M., Weed, A.S., MacFarlane, D.W., 2021. Over half of western United States' most abundant tree species in decline. Nat. Commun. 12, 451. https://doi.org/10.1038/s41467-020-20678-z.

 
State Forestry and Grassland Administration, 2018. China Forest and Grassland Statistical Yearbook. China Forestry Publishing House, Beijing (2018) (in Chinese).
 

Sun, S., Cao, Q., Cao, T., 2019. Evaluation of distance-independent competition indices in predicting tree survival and diameter growth. Can. J. For. Res. 49, 440–446. https://doi.org/10.1139/cjfr-2018-0344.

 

Sun, Y., Zhu, J., Yan, Q., Hu, Z., Zheng, X., 2016. Changes in vegetation carbon stocks between 1978 and 2007 in central Loess Plateau, China. Environ. Earth Sci. 75, 1–16. https://doi.org/10.1007/s12665-015-5199-4.

 

Trumbore, S., Brando, P., Hartmann, H., 2015. Forest health and global change. Science 349, 814–818. https://doi.org/10.1126/science.aac6759.

 

Uriarte, M., Schwartz, N., Powers, J.S., Marin-Spiotta, E., Liao, W., Werden, L.K., 2016. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797. https://doi.org/10.1111/btp.12380.

 

van Mantgem, P.J., Stephenson, N.L., 2007. Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol. Lett. 10, 909–916. https://doi.org/10.1111/j.1461-0248.2007.01080.x.

 

Wang, G., Yuan, J., Wang, X., Xiao, S., Huang, W., 2004. Competitive regulation of plant allometry and a generalized model for the plant self-thinning process. Bull. Math. Biol. 66, 1875–1885. https://doi.org/10.1016/j.bulm.2004.04.005.

 

Wang, X., Hao, Z., Zhang, J., Lian, J., Li, B., Ye, J., Yao, X., 2009. Tree size distributions in an old-growth temperate forest. Oikos 118, 25–36. https://doi.org/10.1111/j.0030-1299.2008.16598.x.

 
WellerD.E.Relationship between size hierarchy and density of trees in a tropical dry deciduous forest of western IndiaJ. Veg. Sci.20076881382110.1111/j.1654-1103.2007.tb02551.x

Weller, D.E., 2007. Relationship between size hierarchy and density of trees in a tropical dry deciduous forest of western India. J. Veg. Sci. 68, 813–821. https://doi.org/10.1111/j.1654-1103.2007.tb02551.x.

 

Wim, D.V., 2021. Impacts of nitrogen emissions on ecosystems and human health: a mini review. Curr. Opin. Environ. Sci. Health 21, 100249. https://doi.org/10.1016/j.coesh.2021.100249.

 
WuC.HongW.YanS.Experience model for self-thinning process of even-aged pure standsJ. Appl. Ecol.20051623323710.1360/biodiv.050068

Wu, C., Hong, W., Yan, S., 2005. Experience model for self-thinning process of even-aged pure stands. J. Appl. Ecol. 16, 233–237. https://doi.org/10.1360/biodiv.050068.

 
YanD.ChenW.LiuL.LiJ.LiuL.WangY.Change in current and future geographic distributions of Ulmus lamellosa in ChinaJ. For. Res.2018291147115610.1007/s11676-017-0503-7

Yan, D., Chen, W., Liu, L., Li, J., Liu, L., Wang, Y., 2018. Change in current and future geographic distributions of Ulmus lamellosa in China. J. For. Res. 29, 1147–1156. https://doi.org/10.1007/s11676-017-0503-7.

 

Yu, Z., Ciais, P., Piao, S., Houghton, R.A., Lu, C., Tian, H., Agathokleous, E., Kattel, G.R., Sitch, S., Goll, D., Yue, X., Walker, A., Friedlingstein, P., Jain, A.K., Liu, S., Zhou, G., 2022. Forest expansion dominates China's land carbon sink since 1980. Nat. Commun. 13, 5374. https://doi.org/10.1038/s41467-022-32961-2.

 

Yu, Z., Liu, S., Wang, J., Wei, X., Schuler, J., Sun, P., Harper, R., Zegre, N., 2019. Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China. Global Change Biol. 25, 68–77. https://doi.org/10.1111/gcb.14484.

 

Yu, Z., Zhao, H., Liu, S., Zhou, G., Fang, J., Yu, G., Tang, X., Wang, W., Yan, J., Wang, G., Ma, K., Li, S., Du, S., Han, S., Ma, Y., Zhang, D., Liu, J., Liu, S., Chu, G., Zhang, Q., Li, Y., 2020. Mapping forest type and age in China's plantations. Sci. Total Environ. 744, 140790. https://doi.org/10.1016/j.scitotenv.2020.140790.

 
ZhangC.JuW.ChenJ.LiD.WangX.FanW.LiM.ZanM.Mapping forest stand age in China using remotely sensed forest height and observation dataJ. Geophys. Res. Biogeosci.20141191163117910.1002/2013jg002515

Zhang, C., Ju, W., Chen, J., Li, D., Wang, X., Fan, W., Li, M., Zan, M., 2014. Mapping forest stand age in China using remotely sensed forest height and observation data. J. Geophys. Res. Biogeosci. 119, 1163–1179. https://doi.org/10.1002/2013jg002515.

 

Zhang, D., 2019. China's forest expansion in the last three plus decades: Why and how? For. Policy Econ. 98, 75–81. https://doi.org/10.1016/j.forpol.2018.07.006.

 

Zhang, W., Jia, X., Bai, Y., Wang, G., 2011. The difference between above- and below-ground self-thinning lines in forest communities. Ecol. Res. 26, 819–825. https://doi.org/10.1007/s11284-011-0843-2.

 

Zhang, Y., Yao, Y., Wang, X., Liu, Y., Piao, S., 2017. Mapping spatial distribution of forest age in China. Earth Space Sci. 4, 108–116. https://doi.org/10.1002/2016ea000177.

 

Zhang, Y., Ma, K., Anand, M., Fu, B., 2011. Multifractal pattern and process during a recent period of forest expansion in a temperate mountainous region of China. Ecol. Inf. 6, 384–390. https://doi.org/10.1016/j.ecoinf.2011.08.005.

 
ZhangZ.PapaikM.J.WangX.HaoZ.YeJ.LinF.YuanZ.The effect of tree size, neighborhood competition and environment on tree growth in an old-growth temperate forestJ. Plant Ecol.20171097098010.1093/jpe/rtw126

Zhang, Z., Papaik, M.J., Wang, X., Hao, Z., Ye, J., Lin, F., Yuan, Z., 2017. The effect of tree size, neighborhood competition and environment on tree growth in an old-growth temperate forest. J. Plant Ecol. 10, 970–980. https://doi.org/10.1093/jpe/rtw126.

 
ZhuH.ChenY.ZhaoY.ZhangL.ZhangX.ZhengB.LiuL.PanY.XuW.LiuX.The response of nitrogen deposition in China to recent and future changes in anthropogenic emissionsJ. Geophys. Res. Atmos.2022127e2022JD03743710.1029/2022JD037437

Zhu, H., Chen, Y., Zhao, Y., Zhang, L., Zhang, X., Zheng, B., Liu, L., Pan, Y., Xu, W., Liu, X., 2022. The response of nitrogen deposition in China to recent and future changes in anthropogenic emissions. J. Geophys. Res. Atmos. 127, e2022JD037437. https://doi.org/10.1029/2022JD037437.

 

Zhu, Y., Wang, Y., Chen, L., 2020. Effects of non-native tree plantations on soil microarthropods and their feeding activity on the Chinese Loess Plateau. For. Ecol. Manag. 477, 118501. https://doi.org/10.1016/j.foreco.2020.118501.

Forest Ecosystems
Article number: 100094
Cite this article:
Dong Y, Agathokleous E, Liu S, et al. Demographic changes in China's forests from 1998 to 2018. Forest Ecosystems, 2023, 10(1): 100094. https://doi.org/10.1016/j.fecs.2023.100094

520

Views

10

Downloads

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 11 December 2022
Revised: 31 January 2023
Accepted: 31 January 2023
Published: 08 February 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return