The Global Navigation Satellite System (GNSS) is widely utilized for accurate positioning. One commonly applied method to obtain precise coordinate estimates is by implementing the relative positioning in network mode. However, this approach can be complex and challenging. Fortunately, The Japan Aerospace Exploration Agency (JAXA) offers freely available satellite orbit and clock correction products called Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis (MADOCA), which can enhance positioning accuracy through the precise point positioning (PPP) method. This study focuses on evaluating PPP static mode positioning using MADOCA products and comparing the results with the highly precise relative positioning method. By analyzing a network of 20 GNSS stations in Indonesia, we found that the PPP method using MADOCA products provided favorable positioning estimates. The median discrepancies and the corresponding median absolute deviation (MAD) for easting, northing, and up components were estimated as 9 ± 18 mm, 10 ± 9 mm, and 3 ± 40 mm, respectively. These results indicate that PPP with MADOCA products can be a reliable alternative for establishing Indonesia's horizontal control networks, particularly for orders 0, 1, 2, and 3, and for a broad spectrum of geoscience monitoring activities. However, considerations such as epoch transformations and seismic activities should be taken into account for accurate positioning applications that comply with the definition of the national reference framework.
L. Wang, P.D. Groves, M.K. Ziebart, GNSS Shadow matching: improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme, Navigation 60 (3) (2013) 195-207, https://doi.org/10.1002/navi.38.
K. Krasuski, Aircraft positioning using SPP method in GPS system, Aircr. Eng. Aerosp 90 (8) (2018) 1213-1220, https://doi.org/10.1108/AEAT-03-2017-0087.
M. Pepe, D. Costantino, G. Vozza, et al., Comparison of two approaches to GNSS positioning using code pseudoranges generated by smartphone device, Appl. Sci. 11 (11) (2021) 4787, https://doi.org/10.3390/app11114787.
M.J. Jiménez-Martínez, M. Farjas-Abadia, N. Quesada-Olmo, An approach to improving GNSS positioning accuracy using several GNSS devices, Rem. Sens. 13 (6) (2021) 1149, https://doi.org/10.3390/rs13061149.
U. Kizil, L. Tisor, Evaluation of RTK-GPS and Total Station for applications in land surveying, J. Earth Syst. Sci. 120 (2) (2011) 215-221, https://doi.org/10.1007/s12040-011-0044-y.
G. Schloderer, M. Bingham, J.L. Awange, et al., Application of GNSS-RTK derived topographical maps for rapid environmental monitoring: a case study of Jack Finnery Lake (Perth, Australia), Environ. Monit. Assess. 180 (1–4) (2011) 147-161, https://doi.org/10.1007/s10661-010-1778-8.
A. Šiljeg, I. Marić, F. Domazetović, et al., Bathymetric survey of the st. Anthony channel (Croatia) using multibeam echosounders (MBES)—a new methodological semi-automatic approach of point cloud post-processing, J. Mar. Sci. Eng. 10 (1) (2022) 101, https://doi.org/10.3390/jmse10010101.
P. Dabove, The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques, Geod. Geodyn. 10 (4) (2019) 282-289, https://doi.org/10.1016/j.geog.2019.04.006.
T. Charoenkalunyuta, C. Satirapod, V. Keitniyomrung, et al., Performance of network-based RTK GNSS for the cadastral survey in Thailand, Int. J. Geoinf. 15 (3) (2019) 13-19. https://journals.sfu.ca/ijg/index.php/journal/article/view/1847.
A. Marucci, A. Colantoni, I. Zambon, et al., Precision farming in hilly areas: the use of network RTK in GNSS technology, Agriculture 7 (7) (2017) 60, https://doi.org/10.3390/agriculture7070060.
G. Magli, E. Realini, M. Reguzzoni, et al., High-precision GPS survey of via appia: archaeoastronomy-related aspects, Mediterr. Archaeol. Archaeom 14 (2014) 55-65.
K. Xu, R. He, K. Li, et al., Secular crustal deformation characteristics prior to the 2011 Tohoku-Oki earthquake detected from GNSS array, 2003–2011, Adv. Space Res. 69 (2) (2022) 1116-1129, https://doi.org/10.1016/j.asr.2021.10.036.
N.S.A. Alihan, D.D. Wijaya, A.H.M. Din, et al., Spatiotemporal variations of earth tidal displacement over peninsular Malaysia based on GPS observations, Lecture Notes in Civil Engineering 9 (2019) 809-823, https://doi.org/10.1007/978-981-10-8016-6_59.
F. Lyard, F. Lefevre, T. Letellier, Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 59 (2006) 394-415, https://doi.org/10.1007/s10236-006-0086-x.
S. Alcay, S. Ogutcu, I. Kalayci, et al., Displacement monitoring performance of relative positioning and Precise Point Positioning (PPP) methods using simulation apparatus, Adv. Space Res. 63 (5) (2019) 1697-1707, https://doi.org/10.1016/j.asr.2018.11.003.
R. Romero-Andrade, M.E. Trejo-Soto, A. Vega-Ayala, et al., Positioning evaluation of single and dual-frequency low-cost GNSS receivers signals using PPP and static relative methods in urban areas, Appl. Sci. 11 (22) (2021) 10642, https://doi.org/10.3390/app112210642.
S. Zhang, S. Du, W. Li, G. Wang, Evaluation of the GPS precise orbit and clock corrections from MADOCA real-time products, Sensors 19 (11) (2019) 2580, https://doi.org/10.3390/s19112580.
B. Bramanto, I. Gumilar, Evaluation of QZSS orbit and clock products for real-time positioning applications, J. Appl. Geodesy 16 (3) (2022) 165-179, https://doi.org/10.1515/jag-2021-0064.
M. Masykur, Analysis of accuracy the InaCORS BIG online post-processing service, Appl. Geomat. 13 (2) (2021) 227-233, https://doi.org/10.1007/s12518-020-00343-2.
S.A. Ramadhan, A. Kurniawan, I.S. Yudha, et al., InaCORS-BIG service for practice survey, IOP Conf. Ser. Earth Environ. Sci. 936 (1) (2021) 012031, https://doi.org/10.1088/1755-1315/936/1/012031.
R. Raharja, T. Ito, I. Meilano, Evaluation of earthquake potential using a kinematic crustal block motion model in Java, Indonesia, based on GNSS observation, J. Asian Earth Sci. X 11 (2024) 100171, https://doi.org/10.1016/j.jaesx.2023.100171.
S. Susilo, R. Salman, W. Hermawan, et al., GNSS land subsidence observations along the northern coastline of Java, Indonesia, Sci. Data 10 (1) (2023) 421, https://doi.org/10.1038/s41597-023-02274-0.
D.D. Wijaya, N.S.E. Putri, S.T. Wibowo, et al., Seasonal and annual variations of the GPS-based precipitable water vapor over Sumatra, Indonesia, Atmos. Res. 275 (2022), https://doi.org/10.1016/j.atmosres.2022.106216.
H. Namie, N. Kubo, Performance evaluation of centimeter-level augmentation positioning L6-CLAS/MADOCA at the beginning of official operation of QZSS, IEEJ J. Ind. Appl. 10 (1) (2021) 27-35, https://doi.org/10.1541/ieejjia.20001080.
Y. Bock, L. Prawirodirdjo, J.F. Genrich, et al., Crustal motion in Indonesia from global positioning system measurements, J. Geophys. Res. 108 (B8) (2023) 2367, https://doi.org/10.1029/2001JB000324.
C. DeMets, R.G. Gordon, D.F. Argus, Geologically current plate motions, Geophys. J. Int. 181 (1) (2010) 1-80, https://doi.org/10.1111/j.1365-246X.2009.04491.x.
B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasle, Gnss - global navigation satellite systems: GPS, GLONASS, Galileo, and more, Springer-Verlag, Wien, 2008.
A.E. Niell, Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. Solid Earth 101 (B2) (1996) 3227-3246, https://doi.org/10.1029/95JB03048.
R. Schmid, M. Rothacher, D. Thaller, et al., Absolute phase center corrections of satellite and receiver antennas, GPS Solut. 9 (4) (2005) 283-293, https://doi.org/10.1007/s10291-005-0134-x.
A. Araszkiewicz, D. Kiliszek, A. Podkowa, Height variation depending on the source of antenna phase centre corrections: LEIAR25.R3 case study, Sensors 19 (18) (2019) 4010, https://doi.org/10.3390/s19184010.
F.H. Lyard, D.J. Allain, M. Cancet, et al., FES2014 global ocean tide atlas: design and performance, Ocean Sci. 17 (3) (2021) 615-649, https://doi.org/10.5194/os-17-615-2021.
T. Pham-Gia, T.L. Hung, The mean and median absolute deviations, Math. Comput. Model. 34 (7–8) (2001) 921-936, https://doi.org/10.1016/S0895-7177(01)00109-1.
A. McCluskey, A.G. Lalkhen, Statistics Ⅱ: central tendency and spread of data, Cont. Educ. Anaesth. Crit. Care Pain 7 (4) (2007) 127-130, https://doi.org/10.1093/bjaceaccp/mkm020.
G. Xu, GPS: theory, algorithms and applications, Springer-Verlag, Berlin, Heidelberg, 2007.
S. Ye, Y. Liu, W. Song, et al., A cycle slip fixing method with GPS + GLONASS observations in real-time kinematic PPP, GPS Solut. 20 (1) (2016) 101-110, https://doi.org/10.1007/s10291-015-0439-3.
I.P. Dobrovolsky, S.I. Zubkov, V.I. Miachkin, Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117 (5) (1979) 1025-1044, https://doi.org/10.1007/BF00876083.
F. Xia, S. Ye, P. Xia, et al., Assessing the latest performance of galileo-only PPP and the contribution of Galileo to multi-GNSS PPP, Adv. Space Res. 63 (9) (2019) 2784-2795, https://doi.org/10.1016/j.asr.2018.06.008.
H. Ma, Q. Zhao, S. Verhagen, et al., Assessing the performance of multi-GNSS PPP-RTK in the local area, Rem. Sens. 12 (3343) (2020), https://doi.org/10.3390/rs12203343.
K. Kawate, Y. Igarashi, H. Yamada, et al., MADOCA: Japanese precise orbit and clock determination tool for GNSS, Adv. Space Res. 71 (10) (2023) 3927-3950, https://doi.org/10.1016/j.asr.2023.01.060.
C.E. Noll, The crustal dynamics data information system: a resource to support scientific analysis using space geodesy, Adv. Space Res. 45 (2010) 1421-1440, https://doi.org/10.1016/j.asr.2010.01.018.