AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors

Yiming ChenaMinghao GuoaLiang Hea,b( )Wei YangaLin XuaJiashen MengaXiaocong Tiana,cXinyu MaaQiang YuaKaichun YangdXufeng HongaLiqiang Maia( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, United States
Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, 430074, China
Department of Civil Engineering, Rice University, Houston, TX, 77005, United States

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

As one of the most important micro energy storage devices (MESDs), graphene-based micro-supercapacitors (G-MSCs) possess the advantages of excellent flexibility, long cycle life, affordability and high reliability. In most cases, constructing three-dimensional (3D) graphene networks is widely utilized to promote the permeation of electrolyte and enhance the utilization of active materials. In this work, conventional freeze-drying process is utilized in the fabrication of G-MSCs to constitute 3D interconnected networks micro-electrodes, and further by regulating the composition of inks, carbon spheres (CSs) at different mass loadings are introduced into the graphene scaffolds to further increase the active sites of the micro-electrodes. The fabricated all carbon-based MSC with the optimal mass loading of CSs (0.406 mg cm−2) exhibits a high specific areal capacitance of 17.01 mF cm−2 at the scan rate of 10 mV s−1 and a capacitance retention of 93.14% after 10000 cycles at the scan rate of 500 mV s−1. The proposed microfabrication process is facile and fully compatible with modern microtechnologies and will be highly suitable for large-scale production and integration.

References

[1]

Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y. Monolithic carbidederived carbon films for micro-supercapacitors. Science 2010;328:480–3.

[2]

El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene microsupercapacitors for flexible and on-chip energy storage. Nat Commun 2013;4:1475.

[3]

Gao W, Singh N, Song L, Liu Z, Reddy AL, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 2011;6:496–500.

[4]

Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol 2017;12:7–15.

[5]

Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X. All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv Mater 2013;25:4035–42.

[6]

Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P. Ultrahigh-power micrometre-sized supercapacitors based on onionlike carbon. Nat Nanotechnol 2010;5:651–4.

[7]

Wu ZS, Parvez K, Feng X, Mullen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 2013;4:2487.

[8]

Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 2014;26:4855–62.

[9]

Jiang Q, Kurra N, Xia C, Alshareef HN. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-andtransfer strategy. Adv. Energy Mater. 2017;7:1601257.

[10]

Peng Y-Y, Akuzum B, Kurra N, Zhao M-Q, Alhabeb M, Anasori B, Kumbur EC, Alshareef HN, Ger M-D, Gogotsi Y. All-MXene (2D titanium carbide) solidstate microsupercapacitors for on-chip energy storage. Energy Environ Sci 2016;9:2847–54.

[11]

Pu X, Liu M, Li L, Han S, Li X, Jiang C, Du C, Luo J, Hu W, Wang ZL. Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater. 2016;6:1601254.

[12]

Lin J, Zhang C, Yan Z, Zhu Y, Peng Z, Hauge RH, Natelson D, Tour JM. 3- Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett 2013;13:72–8.

[13]

Liu Z, Tian X, Xu X, He L, Yan M, Han C, Li Y, Yang W, Mai L. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Res 2017;10:2471–81.

[14]
ZhuMHuangYHuangYLiHWangZPeiZXueQGengHZhiCA highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play functionAdv Mater201729160513710.1002/adma.201605137

Zhu M, Huang Y, Huang Y, Li H, Wang Z, Pei Z, Xue Q, Geng H, Zhi C. A highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play function. Adv Mater 2017;29:1605137.

[15]

Li J, Sollami Delekta S, Zhang P, Yang S, Lohe MR, Zhuang X, Feng X, Östling M. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano 2017;11:8249–56.

[16]

Liu Z, Wu ZS, Yang S, Dong R, Feng X, Mullen K. Ultraflexible in-plane microsupercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv Mater 2016;28:2217–22.

[17]
WangSLiuNTaoJYangCLiuWShiYWangYSuJLiLGaoYInkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based inkJ Mater Chem20153240713

Wang S, Liu N, Tao J, Yang C, Liu W, Shi Y, Wang Y, Su J, Li L, Gao Y. Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J Mater Chem 2015;3:2407–13.

10.1039/C4TA05625F
[18]

Chen B, Jiang Y, Tang X, Pan Y, Hu S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl Mater Interfaces 2017;9:28433–40.

[19]
LiWLiYSuMAnBLiuJSuDLiLLiFSongYPrinting assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitorsJ Mater Chem20175162818

Li W, Li Y, Su M, An B, Liu J, Su D, Li L, Li F, Song Y. Printing assembly and structural regulation of graphene towards three-dimensional flexible microsupercapacitors. J Mater Chem 2017;5:16281–8.

10.1039/C7TA02041D
[20]

Hyun WJ, Secor EB, Kim C-H, Hersam MC, Francis LF, Frisbie CD. Scalable, selfaligned printing of flexible graphene micro-supercapacitors. Adv. Energy Mater. 2017;7:1700285.

[21]

Kim SK, Koo HJ, Lee A, Braun PV. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv Mater 2014;26:5108–12.

[22]

Hong X, He L, Ma X, Yang W, Chen Y, Zhang L, Yan H, Li Z, Mai L. Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process. Nano Res 2017;10:3743–53.

[23]

Yang W, He L, Tian X, Yan M, Yuan H, Liao X, Meng J, Hao Z, Mai L. Carbonmems-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 2017;13:1700639.

[24]

El-Kady MF, Shao Y, Kaner RB. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater 2016;1:16033.

[25]

Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB. Graphene-based materials for flexible supercapacitors. Chem Soc Rev 2015;44:3639–65.

[26]

Wu Z-S, Feng X, Cheng H-M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Nat. Rev. Mater 2014;1:277–92.

[27]
XiongGMengCReifenbergerRGIrazoquiPPFisherTSA review of graphene-based electrochemical microsupercapacitorsElectroanalysis201426305110.1002/elan.201300238

Xiong G, Meng C, Reifenberger RG, Irazoqui PP, Fisher TS. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 2014;26:30–51.

[28]

Xia Y, Mathis TS, Zhao MQ, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S. Thickness-independent capacitance of vertically aligned liquidcrystalline MXenes. Nature 2018;557:409–12.

[29]

Liu L, Niu Z, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev 2016;45:4340–63.

[30]

Liu L, Niu Z, Chen J. Design and integration of flexible planar micro-supercapacitors. Nano Res 2017;10:1524–44.

[31]

Wang Q, Wang X, Wan F, Chen K, Niu Z, Chen J. An all-freeze-casting strategy to design typographical supercapacitors with integrated architectures. Small 2018;14. e1800280.

[32]

Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor with ac line-filtering performance. Science 2010;329:1637–9.

[33]

Zhu C, Liu T, Qian F, Han TY, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 2016;16:3448–56.

[34]
Chen J, Bo Z, Lu G. Vertically-oriented graphene. Springer International Publishing; 2015.
[35]

Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C. Threedimensional holey-graphene/niobia composite architectures for ultrahighrate energy storage. Science 2017;356:599–604.

[36]

Yoon Y, Lee K, Kwon S, Seo S, Yoo H, Kim S, Shin Y, Park Y, Kim D, Choi JY. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 2014;8:4580–90.

[37]

Qiu L, Liu JZ, Chang SL, Wu Y, Li D. Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 2012;3:1241.

[38]

Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater 2015;14:271–9.

[39]

Yu Q, Guan D, Zhuang Z, Li J, Shi C, Luo W, Zhou L, Zhao D, Mai L. Mass production of monodisperse carbon microspheres with size-dependant supercapacitor performance via aqueous self-catalyzed polymerization. Chempluschem 2017;82:1–8.

[40]

Tian X, Shi M, Xu X, Yan M, Xu L, Minhas-Khan A, Han C, He L, Mai L. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv Mater 2015;27:7476–82.

[41]

Zheng S, Ma J, Wu Z-S, Zhou F, He Y-B, Kang F, Cheng H-M, Bao X. All-solidstate flexible planar lithium ion micro-capacitors. Energy Environ Sci 2018;11:2001–9.

[42]
ZhouFHuangHXiaoCZhengSShiXQinJFuQBaoXFengXMullenKWuZSElectrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitorsJ Am Chem Soc2018140819820510.1021/jacs.8b03235

Zhou F, Huang H, Xiao C, Zheng S, Shi X, Qin J, Fu Q, Bao X, Feng X, Mullen K, Wu ZS. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J Am Chem Soc 2018;140:8198–205.

[43]

Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev 2004;35:4245.

[44]

El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012;335:1326–30.

[45]

Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X. Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun 2014;5:4554.

[46]

Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013;341:534–7.

[47]

Wu ZS, Liu Z, Parvez K, Feng X, Mullen K. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater 2015;27:3669–75.

[48]

Wu ZS, Parvez K, Li S, Yang S, Liu Z, Liu S, Feng X, Mullen K. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv Mater 2015;27:4054–61.

[49]

Wu ZS, Parvez K, Winter A, Vieker H, Liu X, Han S, Turchanin A, Feng X, Mullen K. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv Mater 2014;26:4552–8.

[50]

Tang C, Liu Y, Xu C, Zhu J, Wei X, Zhou L, He L, Yang W, Mai L. Ultrafine nickelnanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv Funct Mater 2018;28:1704561.

[51]

Zhao Y, Feng J, Liu X, Wang F, Wang L, Shi C, Huang L, Feng X, Chen X, Xu L. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nat Commun 2014;5:4565.

[52]
DengYXieYZouKJiXReview on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitorsJ Mater Chem2016411447310.1039/C5TA08620E

Deng Y, Xie Y, Zou K, Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem 2016;4:1144–73.

[53]

Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 2016;9:729–62.

[54]

Wickramaratne NP, Xu J, Wang M, Zhu L, Dai L, Jaroniec M. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem Mater 2014;26:2820–8.

[55]

Xiao H, Wu ZS, Chen L, Zhou F, Zheng S, Ren W, Cheng HM, Bao X. One-step device fabrication of phosphorene and graphene interdigital microsupercapacitors with high energy density. ACS Nano 2017;11:7284–92.

[56]

Zheng S, Li Z, Wu ZS, Dong Y, Zhou F, Wang S, Fu Q, Sun C, Guo L, Bao X. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano 2017;11:4009–16.

[57]

Shao Y, Li J, Li Y, Wang H, Zhang Q, Kaner RB. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 2017;4:1145–50.

[58]

Wang S, Wu ZS, Zheng S, Zhou F, Sun C, Cheng HM, Bao X. Scalable fabrication of photochemically reduced graphene-based monolithic microsupercapacitors with superior energy and power densities. ACS Nano 2017;11:4283–91.

[59]
WuZSTanYZZhengSWangSParvezKQinJShiXSunCBaoXFengXMullenKBottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitorsJ Am Chem Soc201713945061210.1021/jacs.7b00805

Wu ZS, Tan YZ, Zheng S, Wang S, Parvez K, Qin J, Shi X, Sun C, Bao X, Feng X, Mullen K. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance microsupercapacitors. J Am Chem Soc 2017;139:4506–12.

Journal of Materiomics
Pages 303-312
Cite this article:
Chen Y, Guo M, He L, et al. Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. Journal of Materiomics, 2019, 5(2): 303-312. https://doi.org/10.1016/j.jmat.2018.11.009

155

Views

14

Crossref

N/A

Web of Science

19

Scopus

Altmetrics

Received: 30 September 2018
Revised: 19 November 2018
Accepted: 21 November 2018
Published: 11 December 2018
© 2018 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return