Article Link
Collect
Submit Manuscript
Show Outline
Outline
Highlights
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3-K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications

Peng Zhaoa,bBin Tanga,bZixuan Fanga,b()Feng Sia,bChengtao Yanga,bGang Liuc()Shuren Zhanga,b
National Engineering Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
School of Materials and Energy, Southwest University, Chongqing, 400715, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

Pmax can be greatly improved with increasing KBT content.

• The introduction of KBT with large band gap compensates the deterioration of BDS.

• 0.62SBT-0.38KBT shows high W (2.21 J/cm3) and η (91.4%) at high BDS (220 kV/cm).

• 0.62SBT-0.38KBT exhibits both high Wd (1.81 J/cm3) and PD (49.5 MW/cm3).

• 0.62SBT-0.38KBT shows excellent stability of temperature, frequency and cycling.

Graphical Abstract

View original image Download original image

Abstract

Sr0.7Bi0.2TiO3 (SBT) by increasing the proportion and size of polar nano-region. Meanwhile, the BDS remains a high level with x ≤ 0.38 attributed to the addition of KBT with a large band gap. As a result, the 0.62SBT-0.38KBT exhibits a high energy storage density of 2.21 J/cm3 with high η of 91.4% at 220 kV/cm and superior temperature stability (−55 ~ 150 °C), frequency stability (10 ~ 500 Hz) and fatigue resistance (105 cycles). Moreover, high pulsed discharge energy density (1.81 J/cm3), high power density (49.5 MW/cm3) and great thermal stability (20 ~ 160 °C) are achieved in 0.62SBT-0.38KBT. Based on these excellent properties, the 0.62SBT-0.38KBT are suitable for pulsed power systems. This work provides a novel strategy and systematic study for improving energy storage properties of SBT.

References

[1]

Li J, Li F, Xu Z, Zhang S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 2018;30:e1802155.

[2]

Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578-82.

[3]

Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, et al. Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 2019;113:190-201.

[4]

Shao T, Du H, Ma H, Qu S, Wang J, Wang J, et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem 2017;5:554-63.

[5]

Wang D, Fan Z, Zhou D, Khesro A, Murakami S, Feteira A, et al. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J Mater Chem 2018;6:4133-44.

[6]

Meng N, Ren X, Santagiuliana G, Ventura L, Zhang H, Wu J, et al. Ultrahigh β-phase content poly (vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun 2019;10. 4535.

[7]

Si F, Tang B, Fang Z, Li H, Zhang S. A new type of BaTiO3-based ceramics with Bi(Mg1/2Sn1/2)O3 modification showing improved energy storage properties and pulsed discharging performances. J Alloys Compd 2020;819:153004.

[8]

Sakurai M, Kanehara K, Takeda H, Tsurumi T, Hoshina T. Wideband dielectric spectroscopy of (Sr0.7Bi0.2)TiO3 ceramics and its microscopic mechanism of polarization. J Ceram Soc Jpn 2016;124:664-7.

[9]

Zhang G, Cao M, Hao H, Liu H. Energy storage characteristics in Sr(1-1.5x)BixTiO3 ceramics. Ferroelectrics 2013;447:86-94.

[10]

Shen Z, Wang X, Luo B, Li L. BaTiO3-BiYbO3 perovskite materials for energy storage applications. J Mater Chem 2015;3:18146-53.

[11]

Kong X, Yang L, Cheng Z, Zhang S. Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications. J Am Ceram Soc 2019;103:1722-31.

[12]

Zhao P, Tang B, Si F, Yang C, Li H, Zhang S. Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency. J Eur Ceram Soc 2020;40:1938-46.

[13]

Chao M, Liu J, Zeng M, Wang D, Yu H, Yuan Y, et al. High discharge efficiency of (Sr,Pb,Bi) TiO3 relaxor ceramics for energy-storage application. Appl Phys Lett 2018;112:203903.

[14]

Li F, Hou X, Wang J, Zeng H, Shen B, Zhai J. Structure-design strategy of 0-3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance. J Eur Ceram Soc 2019;39:2889-98.

[15]

Dung D, Thiet D, Odkhuu D, Cuong L, Tuan N, Cho S. Room-temperature ferromagnetism in Fe-doped wide band gap ferroelectric Bi0.5K0.5TiO3 nanocrystals. Mater Lett 2015;156:129-33.

[16]

Gonzalez C, Schileo G, Murakami S, Khesro A, Wang DW, Reaney I, et al. Continuously controllable optical band gap in orthorhombic ferroelectric KNbO3-BiFeO3 ceramics. Appl Phys Lett 2017;110:172902.

[17]

Sun H, Zhang Q, Wang X, Zhang Y. The photoluminescence and electrical properties of lead-free (Bi0.5Na0.5)TiO3:Pr ceramics. Ceram Int 2014;40:15669-75.

[18]

Kim C, Pilania G, Ramprasad R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX(3) perovskites. J Phys Chem C 2016;120:14575-80.

[19]

Li F, Jiang T, Zhai J, Shen B, Zeng H. Exploring novel bismuth-based materials for energy storage applications. J Mater Chem C 2018;6:7976-81.

[20]

Li F, Hou X, Li T, Si R, Wang C, Zhai J. Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3-Ba(Mg1/3Nb2/3)O3 ceramics via a hot-pressing strategy. J Mater Chem C 2019;7:12127-38.

[21]

Shannon R. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr A 1976;32:751-67.

[22]

Zhang L, Pu Y, Chen M, Wei T, Keipper W, Shi R, et al. High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J Eur Ceram Soc 2020;40:71-7.

[23]

Zhang L, Pu Y, Chen M, Wei T, Peng X. Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J 2020;383:123154.

[24]

Wang D, Liu J, Zeng M, Zhang C, Li H, Yu H, et al. Stabilizing temperature-capacitance dependence of (Sr,Pb,Bi)TiO3-Bi4Ti3O12 solutions for energy storage. J Am Ceram Soc 2019;102:4029-37.

[25]

Yang H, Yan F, Lin Y, Wang T, He L, Wang F. A lead free relaxation and high energy storage efficiency ceramics for energy storage applications. J Alloys Compd 2017;710:436-45.

[26]

Qiao X, Wu D, Zhang F, Niu M, Chen B, Zhao X, et al. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics. J Eur Ceram Soc 2019;39:4778-84.

[27]

Si F, Tang B, Fang Z, Li H, Zhang S. Enhanced energy storage and fast charge-discharge properties of (1-x)BaTiO3-xBi(Ni1/2Sn1/2)O3 relaxor ferroelectric ceramics. Ceram Int 2019;45:17580-90.

[28]

Hiruma Y, Nagata H, Takenaka T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys 2009;105:084112.

[29]

Cui C, Pu Y, Gao Z, Wan J, Guo Y, Hui C, et al. Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J Alloys Compd 2017;711:319-26.

[30]

Li D, Lin Y, Zhang M, Yang H. Achieved ultrahigh energy storage properties and outstanding charge-discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based ceramics by introducing a linear additive. Chem Eng J 2020;392:123729.

[31]

Huang X, Hao H, Zhang S, Liu H, Zhang W, Xu Q, et al. Structure and dielectric properties of BaTiO3-BiYO3 perovskite solid solutions. J Am Ceram Soc 2014;97:1797-801.

[32]

Badapanda T, Sarangi S, Behera B, Parida S, Saha S, Sinha T, et al. Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling. J Alloys Compd 2015;645:586-96.

[33]

Yang H, Yan F, Lin Y, Wang T. Improvement of dielectric and energy storage properties in SrTiO3-based lead-free ceramics. J Alloys Compd 2017;728:780-7.

[34]

Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv Mater 2015;27:6658-63.

[35]

McPherson J, Kim J, Shanware A, Mogul H. Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl Phys Lett 2003;82:2121-3.

[36]

Zhou H, Liu X, Zhu X, Chen X. CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J Am Ceram Soc 2018;101:1999-2008.

[37]

Zhang F, Zhao X, Liu H, Wang L, Shen P, Tian Q, et al. Study of the properties of SBT ceramics doped with different concentrations of Ca. Ceram Int 2018;44:21914-20.

[38]

Zhu M, Hu H, Lei N, Hou Y, Yan H. Dependence of depolarization temperature on cation vacancies and lattice distortion for lead-free 74(Bi1/2Na1/2)TiO3-20.8(Bi1/2K1/2)TiO3-5.2BaTiO3 ferroelectric ceramics. Appl Phys Lett 2009;94:182901.

[39]

Wu M, Liu L, Fang L, Yang Z, Hu C. Impedance spectroscopy of (1-x)Bi0.5Na0.5TiO3-xK0.5Na0.5NbO3 ceramics at high temperature. J Univ Electron Sci Technol China 2011;40:111-4.

[40]

Sun Y, Boggs SA, Ramprasad R. The intrinsic electrical breakdown strength of insulators from first principles. Appl Phys Lett 2012;101:132906.

[41]

Jin L, Li F, Zhang SJ. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 2014;97:1-27.

[42]

Yang X, Li W, Zhang Y, Qiao Y, Yang Y, Fei W. High energy storage density achieved in Bi3+-Li+ co-doped SrTi0.99Mn0.01O3 thin film via ionic pair doping-engineering. J Eur Ceram Soc 2020;40:706-11.

[43]

Yang L, Kong X, Cheng Z, Zhang S. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J Mater Chem 2019;7:8573-80.

[44]

Zhou M, Liang R, Zhou Z, Dong X. Achieving ultrahigh energy storage density and energy efficiency simultaneously in sodium niobate-based lead-free dielectric capacitors via microstructure modulation. Inorg Chem Front 2019;6:2148-57.

[45]

Wu J, Mahajan A, Riekehr L, Zhang H, Yang B, Meng N, et al. Perovskite Srx(Bi 1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nanomater Energy 2018;50:723-32.

[46]

Zhu L, Liu Q, Zhang B, Cen Z, Wang K, Li J, et al. Temperature independence of piezoelectric properties for high-performance BiFeO3-BaTiO3 lead-free piezoelectric ceramics up to 300 °C. RSC Adv 2018;8:35794-801.

[47]

Liu X, Zhao Y, Shi J, Du H, Xu X, Lu H, et al. Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non-stoichiometry. J Alloys Compd 2019;799:231-8.

[48]

Li F, Yang K, Liu X, Zou J, Zhai J, Shen B, et al. Temperature induced high charge-discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics. Scripta Mater 2017;141:15-9.

[49]

Zheng D, Zuo R. Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J Eur Ceram Soc 2017;37:413-8.

[50]

Pan H, Zeng Y, Shen Y, Lin Y, Ma J, Li L, et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J Mater Chem 2017;5:5920-6.

[51]

Hu D, Pan Z, Zhang X, Ye H, He Z, Wang M, et al. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics. J Mater Chem C 2020;8:591-601.

[52]

Jiang X, Hao H, Zhang S, Lv J, Cao M, Yao Z, et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J Eur Ceram Soc 2019;39:1103-9.

[53]

Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S. (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 2019;5:385-93.

[54]

Yuan Q, Yao F, Wang Y, Ma R, Wang H. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J Mater Chem C 2017;5:9552-8.

[55]

Zhou M, Liang R, Zhou Z, Yan S, Dong X. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustainable Chem Eng 2018;6:12755-65.

[56]

Li F, Zhou M, Zhai J, Shen B, Zeng H. Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance. J Eur Ceram Soc 2018;38:4646-52.

Journal of Materiomics
Pages 195-207
Cite this article:
Zhao P, Tang B, Fang Z, et al. Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3-K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications. Journal of Materiomics, 2021, 7(1): 195-207. https://doi.org/10.1016/j.jmat.2020.07.009
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return