Article Link
Collect
Submit Manuscript
Show Outline
Outline
Highlights
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article | Open Access

Emergent strain engineering of multiferroic BiFeO3 thin films

Fei SunaDeyang Chena,b()Xingsen GaoaJun-Ming Liua,c
Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• Emergent strain engineering approaches are summarized.

• Freestanding thin films and interface layer introduction can impose continuous strain beyond substrate limitations..

• Defects introduced by ion implantation can provide large tunable strain to achieve c/a ratio to 1.29 in BFO thin films.

Graphical Abstract

View original image Download original image

Abstract

BiFeO3, a single-phase multiferroic material, possesses several polymorphs and exhibits a strong sensitivity to strain. Recently, emergent strain engineering in BiFeO3 thin films has attracted intense interest, which can overcome the confines of traditional strain engineering introduced through the mismatch between the film and substrate. In this review, we discuss emerging non-traditional strain engineering approaches to create new ground states and manipulate novel functionalities in multiferroic BiFeO3 thin films. Through fabricating freestanding thin films, inserting an interface layer or utilizing thermal expansion mismatch, continuously tunable strain can be imposed beyond substrate limitations. Nanostructured evolution and defect introduction are discussed as efficient routes to introduce strain, promising for the development of new nanodevices. Ultrafast optical excitation, growth conditions and chemical doping driven strain are summarized as well. We hope this review will arouse the readers’ interest in this fascinating field.

References

[1]

Martin LW, Rappe AM. Thin-film ferroelectric materials and their applications. Nat Rev Mater 2017;2(2):1-14. https://doi.org/10.1038/natrevmats.2016.87.

[2]

Sando D, Xu B, Bellaiche L, Nagarajan V. A multiferroic on the brink: uncovering the nuances of strain-induced transitions in BiFeO3. Appl Phys Rev 2016;3(1):011106. https://doi.org/10.1063/1.4944558.

[3]

Yang YR, Infante IC, Dkhil B, Bellaiche L. Strain effects on multiferroic BiFeO3 films. Compt Rendus Phys 2015;16(2):193-203. https://doi.org/10.1016/j.crhy.2015.01.010.

[4]

Schlom DG, Chen LQ, Fennie CJ, Gopalan V, Muller DA, Pan XQ, et al. Elastic strain engineering of ferroic oxides. MRS Bull 2014;39(2):118-30. https://doi.org/10.1557/mrs.2014.1.

[5]

Dixit H, Beekman C, Schleputz CM, Siemons W, Yang Y, Senabulya N, et al. Understanding strain-induced phase transformations in BiFeO3 thin films. Adv Sci 2015;2(8):1500041. https://doi.org/10.1002/advs.201500041.

[6]

Damodaran AR, Agar JC, Pandya S, Chen ZH, Dedon L, Xu RJ, et al. New modalities of strain-control of ferroelectric thin films. J Phys Condens Matter 2016;28(26):263001. https://doi.org/10.1088/0953-8984/28/26/263001.

[7]

Biegalski MD, Jia Y, Schlom DG, Trolier-McKinstry S, Streiffer SK, Sherman V, et al. Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates. Appl Phys Lett 2006;88(19):192907. https://doi.org/10.1063/1.2198088.

[8]

Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 2004;306(5698):1005-9. https://doi.org/10.1126/science.1103218.

[9]

Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nat Mater 2003;2(1):43-7. https://doi.org/10.1038/nmat800.

[10]

Lee HN, Nakhmanson SM, Chisholm MF, Christen HM, Rabe KM, Vanderbilt D. Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys Rev Lett 2007;98(21):217602. https://doi.org/10.1103/PhysRevLett.98.217602.

[11]

Sando D, Agbelele A, Daumont C, Rahmedov D, Ren W, Infante IC, et al. Control of ferroelectricity and magnetism in multi-ferroic BiFeO3 by epitaxial strain. Phil Trans R Soc A 2014;372:20120438. https://doi.org/10.1098/rsta.2012.0438. 2009.

[12]

Liu S, Grinberg I, Takenaka H, Rappe AM. Reinterpretation of the bond-valence model with bond-order formalism: an improved bond-valence-based interatomic potential for PbTiO3. Phys Rev B 2013;88(10):104102. https://doi.org/10.1103/PhysRevB.88.104102.

[13]

Sepliarsky M, Cohen RE. First-principles based atomistic modeling of phase stability in PMN-xPT. J Phys Condens Matter 2011;23(43):435902. https://doi.org/10.1088/0953-8984/23/43/435902.

[14]

Lv J, Gao WW, Li J, Li TY, Long CB, Lou XJ, et al. Large strain and strain memory effect in bismuth ferrite lead-free ceramics. J Mater Chem C 2017;5(37):9528-33. https://doi.org/10.1039/C7TC03282J.

[15]

Zeches RJ, Rossell MD, Zhang JX, Hatt AJ, He Q, Yang CH, et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 2009;326(5955):977-80. https://doi.org/10.1126/science.1177046.

[16]

Chen DY, Nelson CT, Zhu XH, Serrao CR, Clarkson JD, Wang Z, et al. A strain driven antiferroelectric-to-ferroelectric phase transition in La-doped BiFeO3 thin films on Si. Nano Lett 2017;17(9):5823-9. https://doi.org/10.1021/acs.nanolett.7b03030.

[17]

Heo Y, Lee JH, Xie L, Pan X, Yang C-H, Seide J. Enhanced conductivity at orthorhombic–rhombohedral phase boundaries in BiFeO3 thin films. NPG Asia Mater 2016;8:e297. https://doi.org/10.1038/am.2016.120.

[18]

Zhang JX, He Q, Trassin M, Luo W, Yi D, Rossell MD, et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys Rev Lett 2011;107(14):147602. https://doi.org/10.1103/PhysRevLett.107.147602.

[19]

Sando D, Yang YR, Bousquet E, Carretero C, Garcia V, Fusil S, et al. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat Commun 2015;7(1):10718. https://doi.org/10.1038/ncomms10718.

[20]

Nakashima S, Uchida T, Doi K, Saitoh K, Fujisawa H, Sakata O, et al. Strain evolution of epitaxial tetragonal-like BiFeO3 thin films on LaAlO3 (001) substrates prepared by sputtering and their bulk photovoltaic effect. Jpn J Appl Phys 2016;55(10):101501. https://doi.org/10.7567/JJAP.55.101501.

[21]

Liu HJ, Yang P, You L, Zhou Y, Fan Z, Tan HR, et al. Nanoscale phase mixture in uniaxial strained BiFeO3 (110) thin films. J Appl Phys 2015;118(10):104103. https://doi.org/10.1063/1.4930049.

[22]

Zhang JX, Xiang B, He Q, Seidel J, Zeches RJ, Yu P, et al. Large field-induced strains in a lead-free piezoelectric material. Nat Nanotechnol 2011;6(2):98-102. https://doi.org/10.1038/nnano.2010.265.

[23]

Yan L, Zhuo M, Wang Z, Yao J, Haberkorn N, Zhang S, et al. Magnetoelectric properties of flexible BiFeO3/Ni tapes. Appl Phys Lett 2012;101(1):012908. https://doi.org/10.1063/1.4731780.

[24]

Qian J, Wang YZ, Liu RR, Xie XF, Yan X, Leng JF, et al. Bendable Bi(Fe0.95Mn0.05)O3 ferroelectric film directly on aluminum substrate. J Alloys Compd 2020;827:154381. https://doi.org/10.1016/j.jallcom.2020.154381.

[25]

Alsubaie A, Sharma P, Lee JH, Kim JY, Yang CH, Seidel J. Uniaxial strain controlled ferroelastic domain evolution in BiFeO3. ACS Appl Mater Interfaces 2018;10(14):11768-75. https://doi.org/10.1021/acsami.8b01711.

[26]

Yang MM, Zhao XQ, Wang J, Zhu QX, Zhang JX, Li XM, et al. Intrinsic and quantitative effects of in-plane strain on ferroelectric properties of Mn-doped BiFeO3 epitaxial films by in situ inducing strain in substrates. Appl Phys Lett 2014;104(5):052902. https://doi.org/10.1063/1.4863825.

[27]

Zhang W, Yang MM, Liang X, Zheng HW, Wang Y, Gao WX, et al. Piezostrain-enhanced photovoltaic effects in BiFeO3/La0.7Sr0.3MnO3/PMN-PT heterostructures. Nanomater Energy 2015;18:315-24. https://doi.org/10.1016/j.nanoen.2015.10.013.

[28]

Ahlawat A, Satapathy S, Choudhary RJ, Singh MK, Gupta PK. Observation of magnetoelectric coupling in BiFeO3-(Pb(Mg1/3Nb2/3)O3-PbTiO3) composites. Mater Lett 2016;181:123-6. https://doi.org/10.1016/j.matlet.2016.05.127.

[29]

Yang BB, Li CH, Liu M, Wei RH, Tang XW, Hu L, et al. Design of flexible inorganic BiFe0.93Mn0.07O3 ferroelectric thin films for nonvolatile memory. J Materiomics 2020;6(3):600-6. https://doi.org/10.1016/j.jmat.2020.04.010.

[30]

Yang CH, Qian J, Lv PP, Wu HT, Lin XJ, Wang K, et al. Flexible lead-free BFO-based dielectric capacitor with large energy density, superior thermal stability, and reliable bending endurance. J Materiomics 2020;6(1):200-8. https://doi.org/10.1016/j.jmat.2020.01.010.

[31]

Yang CH, Han YJ, Qian J, Lv PP, Lin XJ, Huang SF, et al. Flexible, temperature resistant, and fatigue-free ferroelectric memory based on Bi(Fe0.93Mn0.05Ti0.02)O3 thin film. ACS Appl Mater Interfaces 2019;11(13):12647-55. https://doi.org/10.1021/acsami.9b01464.

[32]

Hong SS, Gu MQ, Verma M, Harbola V, Wang BY, Lu Di, et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 2020;368(6486):71-6. https://doi.org/10.1126/science.aax9753.

[34]

Ji DX, Cai SH, Paudel TR, Sun HY, Zhang CC, Han L, et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019;570(7759):87-90. https://doi.org/10.1038/s41586-019-1255-7.

[35]

Guo R, You L, Lin WN, Abdelsamie A, Shu XY, Zhou GW, et al. Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nat Commun 2020;11:2571. https://doi.org/10.1038/s41467-020-16465-5.

[36]
Deng X, Chen C, Chen DY, Cai XB, Xu C, Yin XZ, et al. Strain engineering of epitaxial oxide heterostructures beyond substrate limitations. Preprint at arXiv, https://arxiv.org/abs/1905.01070; 2019.
[37]

Zhang JX, Ke XX, Gou GY, Seidel J, Xiang B, Yu P, et al. A nanoscale shape memory oxide. Nat Commun 2013;4(1):2768. https://doi.org/10.1038/ncomms3768.

[38]

Sun F, Tian G, Chen C, Deng X, Li PL, Chen ZF, et al. Phase transitions in BiFeO3 nanoislands with enhanced electromechanical response. Ceram Int 2018;44(17):21725-9. https://doi.org/10.1016/j.ceramint.2018.08.265.

[39]

Zhang L, Yuan YK, Lapano J, Brahlek M, Lei SM, Kabius B, et al. Continuously tuning epitaxial strains by thermal mismatch. ACS Nano 2018;12(2):1306-12. https://doi.org/10.1021/acsnano.7b07539.

[40]

Fujino S, Murakami M, Anbusathaiah V, Lim SH, Nagarajan V, Fennie CJ, et al. Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl Phys Lett 2008;92(20):202904. https://doi.org/10.1063/1.2931706.

[41]

Cheng CJ, Kan D, Lim SH, McKenzie WR, Munroe PR, Salamanca-Riba LG, et al. Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys Rev B 2009;80:014109. https://doi.org/10.1103/PhysRevB.80.014109.

[42]

Chen C, Wang CA, Cai XB, Xu C, Li CW, Zhou JT, et al. Controllable defect driven symmetry change and domain structure evolution in BiFeO3 with enhanced tetragonality. Nanoscale 2019;11(17):8110-8. https://doi.org/10.1039/c9nr00932a.

[43]

Wen H, Chen P, Cosgriff MP, Walko DA, Lee JH, Adamo C, et al. Electronic origin of ultrafast photoinduced strain in BiFeO3. Phys Rev Lett 2013;110(3):037601. https://doi.org/10.1103/PhysRevLett.110.037601.

[44]

Dong GH, Li SZ, Yao MT, Zhou ZY, Zhang YQ, Han X, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019;366(6464):475-9. https://doi.org/10.1126/science.aay7221.

[45]

Lu D, Baek DJ, Hong SS, Kourkoutis LF, Hikita Y, Hwang HY. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat Mater 2016;15(12):1255-60. https://doi.org/10.1038/nmat4749.

[46]

Kum H, Lee H, Kim S, Lindemann S, Kong W, Qiao K, et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 2020;578(7793):75-81. https://doi.org/10.1038/s41586-020-1939-z.

[47]

Dong GH, Li SZ, Yao MT, Zhou ZY, Zhang YQ, Han X, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019;366(6464):475-9. https://doi.org/10.1126/science.aay7221.

[48]

Han L, Fang YH, Zhao YQ, Zang YP, Gu ZB, Nie YF, et al. Giant uniaxial strain ferroelectric domain tuning in freestanding PbTiO3 films. Adv Mater Interfaces 2020:1901604. https://doi.org/10.1002/admi.201901604.

[49]

Xu RJ, Huang JW, Barnard ES, Hong SS, Singh P, Wong EK, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat Commun 2020;11:3141. https://doi.org/10.1038/s41467-020-16912-3.

[50]

An F, Qu K, Zhong GK, Dong YQ, Ming WJ, Zi MF, et al. Highly flexible and twistable freestanding single crystalline magnetite film with robust magnetism. Adv Funct Mater 2020;2003495. https://doi.org/10.1002/adfm.202003495.

[51]

Catalan G, Lubk A, Vlooswijk AHG, Snoeck E, Magen C, Janssens A, et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat Mater 2011;10(12):963-7. https://doi.org/10.1038/nmat3141.

[52]

Lee D, Yoon A, Jang SY, Yoon JG, Chung JS, Kim M, et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys Rev Lett 2011;107(5):057602. https://doi.org/10.1103/PhysRevLett.107.057602.

[53]

Lu H, Bark CW, Esque de los Ojos D, Alcala J, Eom CB, Catalan G, et al. Mechanical writing of ferroelectric polarization. Science 2012;336(6077):59-61. https://doi.org/10.1126/science.1218693.

[54]

Wang B, Gu YJ, Zhang SJ, Chen LQ. Flexoelectricity in solids: progress, challenges, and perspectives. Prog Mater Sci 2019;106:100570. https://doi.org/10.1016/j.pmatsci.2019.05.003.

[55]

Park SM, Wang B, Das S, Chae SC, Chung JS, Yoon JG, et al. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat Nanotechnol 2018;13(5):366-70. https://doi.org/10.1038/s41565-018-0083-5.

[56]

Li YJ, Wang JJ, Ye JC, Ke XX, Gou GY, Wei Y, et al. Mechanical switching of nanoscale multiferroic phase boundaries. Adv Funct Mater 2015;25(22):3405-13. https://doi.org/10.1002/adfm.201500600.

[57]

Lu D, Hikita Y, Baek DJ, Merz TA, Sato H, Kim B, et al. Strain tuning in complex oxide epitaxial films using an ultrathin strontium aluminate interface layer. Phys Status Solidi R 2018;12:1700339. https://doi.org/10.1002/pssr.201700339.

[58]

Liu HR, Sun YX, Wang XZ. Study of the electric properties of PbTiO3-BiFeO3 multilayer film structure. J Phys Appl Phys 2008;41(9):095302. https://doi.org/10.1088/0022-3727/41/9/095302.

[59]

Shelke V, Mazumder D, Srinvasan G, Gupta A. The role SrRuO3 bottom layer in strain relaxation of BiFeO3 thin films deposited on lattice mismatched substrates. J Appl Phys 2011;109(7):07D914. https://doi.org/10.1063/1.3564940.

[60]

Wu JG, Wang J. Multiferroic behavior and impedance spectroscopy of bilayered BiFeO3/CoFe2O4 thin films. J Phys Appl Phys 2009;105(12):124107. https://doi.org/10.1063/1.3153955.

[61]

Feng Y, Wang C, Tian SL, Zhou Y, Ge C, Guo HZ, et al. Effects of BaTiO3 and SrTiO3 as the interface layers of epitaxial BiFeO3 thin films. Sci China Phys Mech Astron 2007;60:067711. https://doi.org/10.1007/s11433-017-9020-8.

[62]

Harrington SA, Zhai JY, Denev S, Gopalan V, Wang HY, Bi ZX, et al. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat Nanotechnol 2011;6(8):491-5. https://doi.org/10.1038/nnano.2011.98.

[63]

Weal E, Patnaik S, Bi Z, Wang H, Fix T, Kursumovic A, et al. Coexistence of strong ferromagnetism and polar switching at room temperature in Fe3O4-BiFeO3 nanocomposite thin films. Appl Phys Lett 2010;97(15):153121. https://doi.org/10.1063/1.3500826.

[64]

Choi EM, Weal E, Bi ZX, Wang HY, Kursumovic A, Fix T, et al. Strong room temperature exchange bias in self-assembled BiFeO3-Fe3O4 nanocomposite heteroepitaxial films. Appl Phys Lett 2013;102(1):012905. https://doi.org/10.1063/1.4773567.

[65]

Ma J, Ma J, Zhang QH, Peng RC, Wang J, Liu C, et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat Nanotechnol 2018;13(10):947-52. https://doi.org/10.1038/s41565-018-0204-1.

[66]

Tang YL, Zhu YL, Liu Y, Wang YJ, Ma XL. Giant linear strain gradient with extremely low elastic energy in a perovskite nanostructure array. Nat Commun 2017;8(1):15994. https://doi.org/10.1038/ncomms15994.

[67]

Shin HW, Son JY. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates. J Cryst Growth 2007;480:13-7. https://doi.org/10.1016/j.jcrysgro.2017.10.006.

[68]

Béa H, Bibes M, Barthélémy A, Bouzehouane K. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl Phys Lett 2005;87(7):072508. https://doi.org/10.1063/1.2009808.

[69]

Chu YH, He Q, Yang CH, Yu P, Martin LW, Shafer P, et al. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett 2009;9(4):1726-30. https://doi.org/10.1021/nl900723j.

[70]

Mohan MMS, Ramadurai R. Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films. Dae Solid State Physics Symposium 2018;1942:080040. https://doi.org/10.1063/1.5028874.

[71]

Wu JG, Wang J. Multiferroic behavior and impedance spectroscopy of bilayered BiFeO3/CoFe2O4 thin films. J Appl Phys 2009;105(12):124107. https://doi.org/10.1063/1.3153955.

[72]

Liu HJ, Yang P, Yao K, Wang J. Growth rate induced monoclinic to tetragonal phase transition in epitaxial BiFeO3 (001) thin films. Appl Phys Lett 2011;98(10):102902. https://doi.org/10.1063/1.3561757.

[73]

Singh A, Kaifeng D, Chen JS. Temperature controlled evolution of monoclinic to super-tetragonal phase of epitaxial BiFeO3 thin films on La0.67Sr0.33MnO3 buffered SrTiO3 substrate. AIP Adv 2018;8(3):035221. https://doi.org/10.1063/1.5010601.

[74]

Taylor TR, Hansen PJ, Acikel B, Pervez N, York RA, Streiffer SK, et al. Impact pf thermal strain on the dielectric constant of sputtered barium strontium titanate thin films. Appl Phys Lett 2002;80:1978-80. https://doi.org/10.1063/1.1459482.

[75]

Wang JL, Neaton JB, Zheng HM, Nagarajan V, Ogale S, Liu BT, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003;299(5613):1719-22. https://doi.org/10.1126/science.1080615.

[76]

Sharma A, Ban Z-G, Alpay SP. The role of thermally-induced internal stresses on the tunabilityof textured barium strontium titanate films. Appl Phys Lett 2004;85(6):985-7. https://doi.org/10.1063/1.1781356.

[77]

Kesim MT, Zhang J, Alpay SP, Martin LW. Enhanced electrocaloric and pyroelectric response from ferroelectric multilayers. Appl Phys Lett 2014;105(5):052901. https://doi.org/10.1063/1.4892455.

[78]

Zhang J, Alpaya SP,. Influence of thermal stresses on the electrocaloric properties of ferroelectric films. Appl Phys Lett 2011;98(13):132907. https://doi.org/10.1063/1.3573788.

[79]

Kumar P, Chand P. Structural, Electric transport response and electro-strain-Polarization effect in La and Ni modified bismuth ferrite nanostructures. J Alloys Compd 2018;748:504-14. https://doi.org/10.1016/j.jallcom.2018.03.210.

[80]

Kan D, Anbusathaiah V, Takeuchi I. Chemical substitution-induced ferroelectric polarization rotation in BiFeO3. Adv Mater 2011;23(15):1765-9. https://doi.org/10.1002/adma.201004503.

[81]

Emery SB, Cheng CJ, Kan D, Rueckert FJ, Alpay SP, Nagarajan V, et al. Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Appl Phys Lett 2010;97(15):152902. https://doi.org/10.1063/1.3481065.

[82]

Karimi S, Reaney IM, Han Y, Pokorny J, Sterianou I. Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 2009;44:5102-12. https://doi.org/10.1007/s10853-009-3545-1.

[83]

Kan D, Pálová L, Anbusathaiah V, Cheng CJ, Fujino S, Nagarajan V, et al. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 2010;20(7):1108-15. https://doi.org/10.1002/adfm.200902017.

[84]

Huang NX, Zhao LF, Xu JY, Chen JL, Zhao Y. Effects of substitution of Sm for Bi in BiFeO3 thin films prepared by the sol-gel method. Chin Phys Lett 2010;27:027704. https://doi.org/10.1088/0256-307X/27/2/027704.

[85]

Lin YH, Jiang Q, Wang Y, Nan CW, Chen L, Yu J. Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl Phys Lett 2007;90(17):172507. https://doi.org/10.1063/1.2732182.

[86]

Bras GL, Colson D, Forget A, Genand-Riondet N, Tourbot R, Bonville P. Magnetization and magnetoelectric effect in Bi1−xLaxFeO3 (0≤x≤0.15). Phys Rev B 2009;80:134417. https://doi.org/10.1103/PhysRevB.80.134417.

[87]

Zhou Z, Sun W, Liao ZY, Ning S, Zhu J, Li JF. Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films. J Materiomics 2018;4(1):27-34. https://doi.org/10.1016/j.jmat.2017.11.002.

[88]

Kan D, Cheng CJ, Nagarajan V, Takeuchi I. Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. J Appl Phys 2011;110:014106. https://doi.org/10.1063/1.3605492.

[89]

Levin I, Karimi S, Provenzano V, Dennis CL, Wu H, Comyn TP, et al. Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1−xNdxFeO3 (0.15≤x≤0.25). Phys Rev B 2010;81:020103. https://doi.org/10.1103/PhysRevB.81.020103.

[90]

Christen HM, Nam JH, Kim HS, Hatt AJ, Spaldin NA. Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films. Phys Rev B 2011;83(14):144107. https://doi.org/10.1103/PhysRevB.83.144107.

[91]

Fan Z, Xiao JX, Liu HJ, Yang P, Ke QQ, Ji W, et al. Stable ferroelectric perovskite structure with giant axial ratio and polarization in epitaxial BiFe0.6Ga0.4O3 thin films. ACS Appl Mater Interfaces 2015;7(4):2648-53. https://doi.org/10.1021/am509016w.

[92]

Rong QY, Xiao WZ, Cheng CP, Wang LL. Magnetism and ferroelectricity in BiFeO3 doped with Ga at Fe sites. J Alloys Compd 2019;797:117-21. https://doi.org/10.1016/j.jallcom.2019.05.082.

[93]

Shimizu K, Hojo H, Ikuhara Y, Azuma M. Enhanced piezoelectric response due to polarization rotation in Cobalt-substituted BiFeO3 epitaxial thin films. Adv Mater 2016;28(39):8639-44. https://doi.org/10.1002/adma.201602450.

[94]

Burns SR, Sando D, Xu B, Dupé B, Russell L, Deng GC. Expansion of the spin cycloid in multiferroic BiFeO3 thin films. NPJ Quantum Mater 2019;4:18. https://doi.org/10.1038/s41535-019-0155-2.

[95]

Palkar VR, Kundaliya DC, Malik SK. Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system. J Appl Phys 2003;93(7):4337-9. https://doi.org/10.1063/1.1558992.

[96]

Kumar M, Yadav KL. Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J Appl Phys 2006;100(7):074111. https://doi.org/10.1063/1.2349491.

[97]

Lee CH, Orloff ND, Birol T, Zhu Y, Goian V, Rocas E, et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 2013;502(7472):532-6. https://doi.org/10.1038/nature12582.

[98]

Damodaran AR, Breckenfeld E, Chen ZH, Lee S, Martin LW. Enhancement of ferroelectric curie temperature in BaTiO3 films via strain-induced defect dipole alignment. Adv Mater 2014;26(36):6341-7. https://doi.org/10.1002/adma.201400254.

[99]

Liu HJ, Yang P, Yao K, Ong KP, Wu P, Wang J. Origin of a tetragonal BiFeO3 phase with a giant c/a ratio on SrTiO3 substrates. Adv Funct Mater 2012;22(5):937-42. https://doi.org/10.1002/adfm.201101970.

[100]

Saremi S, Xu RJ, Dedon LR, Mundy JA, Hsu SL, Chen ZH, et al. Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films. Adv Mater 2016;28(48):10750-6. https://doi.org/10.1002/adma.201603968.

[101]

Saremi S, Xu RJ, Dedon LR, Gao R, Ghosh A, Dasgupta A, et al. Electronic transport and ferroelectric switching in ion-bombarded, defect-engineered BiFeO3 thin films. Adv Mater Interfaces 2017;5(3):1700991. https://doi.org/10.1002/admi.201700991.

[102]

Markna JH, Parmar RN, Kuberkar DG, Kumar R, Rana DS, Malik SK. Thickness dependent swift heavy ion irradiation effects on electronic transport of (La0.5Pr0.2)Ba0.3Mn0.3 thin films. Appl Phys Lett 2006;88(15):152503. https://doi.org/10.1063/1.2192087.

[103]

Shukla DK, Kumar R, Mollah S, Choudhary RJ, Thakur P, Sharma SK, et al. Modifications in magnetic properties of BiMn2O5 multiferroic using swift heavy ion irradiation. J Appl Phys 2010;107(9):09D903. https://doi.org/10.1063/1.3360356.

[104]

Guo HW, Dong S, Rack PD, Budai JD, Beekman C, Gai Z, et al. Strain doping: reversible single-axis control of a complex oxide lattice via helium implantation. Phys Rev Lett 2015;114(25):256801. https://doi.org/10.1103/PhysRevLett.114.256801.

[105]

Herklotz A, Rus SF, Wisinger NB, Rouleau CM, Guo E-J, Huon A, et al. Designing morphotropic phase composition in BiFeO3. Nano Lett 2019;19(2):1033-8. https://doi.org/10.1021/acs.nanolett.8b04322.

[106]

Ravalia A, Kataria B, Katba S, Jethva S, Vagadia M, Asokan K, et al. Electronic excitation induced modifications in the ferroelectric polarization of BiFeO3 thin films. Vacuum 2018;155:572-7. https://doi.org/10.1016/j.vacuum.2018.06.064.

[107]

Liou YD, Chiu YY, Hart RT, Kuo CY, Huang YL, Wu YC, et al. Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films. Nat Mater 2019;18(6):580-7. https://doi.org/10.1038/s41563-019-0348-x.

[108]

Ahn Y, Pateras A, Marks SD, Xu H, Zhou T, Luo ZL, et al. Nanosecond optically induced phase transformation in compressively strained BiFeO3 on LaAlO3. Phys Rev Lett 2019;123(4):045703. https://doi.org/10.1103/PhysRevLett.123.045703. 6.

[109]

Rana DS, Kawayama I, Mavani K, Takahashi K, Murakami H, Tonouchi M. Under-standing the nature of ultrafast polarization dynamics of ferroelectric memory in the multiferroic BiFeO3. Adv Mater 2009;21:2881-5. https://doi.org/10.1002/adma.200802094.

[110]

Daranciang D, Highland MJ, Wen H, Young SM, Brandt NC, Hwang HY, et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys Rev Lett 2012;108(8):087601. https://doi.org/10.1103/PhysRevLett.108.087601.

[111]

Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 2009;324(5923):63-6. https://doi.org/10.1126/science.1168636.

[112]

Basu SR, Martin LW, Chu YH, Gajek M, Ramesh R, Rai RC, et al. Photoconductivity in BiFeO3 thin films. Appl Phys Lett 2008;92(9):091905. https://doi.org/10.1063/1.2887908.

[113]

Yang SY, Martin LW, Byrnes SJ, Conry TE, Basu SR. Photovoltaic effects in BiFeO3. Appl Phys Lett 2009;95(6):062909. https://doi.org/10.1063/1.3204695.

[114]

Favero I, Karrai K. Optomechanics of deformable optical cavities. Nat Photon 2009;3(4):201-5. https://doi.org/10.1038/nphoton.2009.42.

[115]

Chen LY, Yang JC, Luo CW, Laing CW, Wu KH, Lin JY, et al. Ultrafast photoinduced mechanical strain in epitaxial BiFeO3 thin films. Appl Phys Lett 2012;101(4):041902. https://doi.org/10.1007/s10948-010-0964-9.

Journal of Materiomics
Pages 281-294
Cite this article:
Sun F, Chen D, Gao X, et al. Emergent strain engineering of multiferroic BiFeO3 thin films. Journal of Materiomics, 2021, 7(2): 281-294. https://doi.org/10.1016/j.jmat.2020.08.005
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return