As a high-k material, hafnium oxide (HfO2) has been used in gate dielectrics for decades. Since the discovery of polar phase in Si-doped HfO2 films, chemical doping has been widely demonstrated as an effective approach to stabilize the ferroelectric phase in HfO2 based thin films. However, the extra capping layer deposition, post-growth annealing and wake-up effect are usually required to arouse the ferroelectricity in HfO2 based thin films, resulting in the increase of complexity for sample synthesis and the impediment of device application. In this study, the ferroelectricity is observed in non-capped dopant-free HfO2 thin films prepared by pulsed laser deposition (PLD) without post-growth annealing. By adjusting the deposited temperature, oxygen pressure and thickness, the maximum polarization up to 14.7 μC/cm2 was obtained in 7.4 nm-thick film. The fraction of orthorhombic phase, concentrations of defects and size effects are considered as possible mechanisms for the influences of ferroelectric properties. This study indicates that PLD is an effective technique to fabricate high-quality ferroelectric HfO2 thin films in the absence of chemical doping, capping layer deposition and post-growth annealing, which may boost the process of nonvolatile memory device application.


BiFeO3, a single-phase multiferroic material, possesses several polymorphs and exhibits a strong sensitivity to strain. Recently, emergent strain engineering in BiFeO3 thin films has attracted intense interest, which can overcome the confines of traditional strain engineering introduced through the mismatch between the film and substrate. In this review, we discuss emerging non-traditional strain engineering approaches to create new ground states and manipulate novel functionalities in multiferroic BiFeO3 thin films. Through fabricating freestanding thin films, inserting an interface layer or utilizing thermal expansion mismatch, continuously tunable strain can be imposed beyond substrate limitations. Nanostructured evolution and defect introduction are discussed as efficient routes to introduce strain, promising for the development of new nanodevices. Ultrafast optical excitation, growth conditions and chemical doping driven strain are summarized as well. We hope this review will arouse the readers’ interest in this fascinating field.