AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unconventional piezoelectric coefficients in perovskite piezoelectric ceramics

Jingen WuaZhongqiang Hua( )Xiangyu GaoaMiaomiao ChengaXinger ZhaoaWei SuaLiqian WangaMengmeng GuanaYongjun DuaRuohao MaoaZhiguang WangaZiyao ZhouaShuxiang DongbMing Liua( )
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, China
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• A “rotated poling” method is proposed to realize unconventional piezoelectric coefficients in piezoelectric ceramics.

• Full nonzero piezoelectric cofficients in the 3 × 6 piezoelectric coefficients matrix can be obtained.

• We demonstrate a promising way to expanding the diversity of piezoelectric devices.

Graphical Abstract

Abstract

Piezoelectric ceramics exhibit three conventional piezoelectric coefficients, i.e., d33, d31, d15, due to their crystal symmetry. Unconventional piezoelectric coefficients, such as d11, d12, d13, d14, d16, etc., can only be extracted from piezoelectric single crystals of special symmetry with specific cut direction. Here we demonstrate a rotated poling method to realize unconventional piezoelectric coefficients in perovskite piezoelectric ceramics. This method is elaborated in theory and experimentally proven to be effective. Full nonzero piezoelectric coefficients in the 3 × 6 piezoelectric coefficients matrix can be obtained by combining these “quasi (effective) piezoelectric coefficients” with the conventional piezoelectric coefficients, which would expand applications in a wide variety of piezoelectric devices.

References

[1]

Uchino K. Piezoelectric ultrasonic motors: overview. Smart Mater Struct 1998;7:273-85.

[2]

Dong S. Review on piezoelectric, ultrasonic, and magnetoelectric actuators. J Adv Dielectr 2020;2(1):1230001-18.

[3]

Tian X, Zhang B, Liu Y, Chen S, Yu H. A novel U-shaped stepping linear piezoelectric actuator with two driving feet and low motion coupling: design, modeling and experiments. Mech Syst Signal Process 2019;124:679-95.

[4]

Deng J, Chen W, Wang Y, Zhang S, Liu Y. Modeling and experimental evaluations of a four-legged stepper rotary precision piezoelectric stage. Mech Syst Signal Process 2019;132:153-67.

[5]

Ko H-P, Jeong H, Koc B. Piezoelectric actuator for mobile auto focus camera applications. J Electroceram 2009;23(2–4):530-5.

[6]

Deng J, Liu Y, Chen W, Yu H. A XY transporting and nanopositioning piezoelectric robot operated by leg rowing mechanism. IEEE ASME Trans Mechatron 2019;24(1):207-17.

[7]

Chen X, Chen Z, Li X, Shan L, Sun W, Wang X, et al. A spiral motion piezoelectric micromotor for autofocus and auto zoom in a medical endoscope. Appl Phys Lett 2016;108(5):052902.

[8]

Sente PA, Labrique FM, Alexandre PJ. Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications. IEEE Trans Ind Electron 2012;59(4):1971-9.

[9]

Souto CR, Silva SAD, Ries A, Pimentel RL, Dana SS. A rapid method connecting vibrating structure size, piezo-actuator size, and control voltage for noise level reduction on oil drilling platforms. J Offshore Mech Arct 2019;141(2):021601.

[10]

Li S, Jiang W, Zheng L, Cao W. A face-shear mode single crystal ultrasonic motor. Appl Phys Lett 2013;102(18):183512.

[11]

Berik P, Chang W-Y, Jiang X. Piezoelectric d36 in-plane shear-mode of lead-free BZT-BCT single crystals for torsion actuation. Appl Phys Lett 2017;110(5):052902.

[12]

Li F, Cabral MJ, Xu B, Cheng Z, Dickey EC, LeBeau JM, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 2019;364(6437):264-8.

[13]

Wang Y, Wang Z, Ge W, Luo C, Li J, Viehland D, et al. Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary single crystals. Phys Rev B 2014;90(13):134107.

[14]

Shimanuki S, Saito S, Yamashita Y. Single crystal of the Pb(Zn1/3Nb2/3)O3-PbTiO3 system grown by the vertical bridgeman method and its characterization. Jpn J Appl Phys 1998;37(6 A):3382-5.

[15]

Fritze H. High-temperature bulk acoustic wave sensors. Meas Sci Technol 2011;22(1):012002.

[16]

Ogi H, Kawasaki Y, Hirao M. Acoustic spectroscopy of lithium niobate Elastic and piezoelectric coefficients. J Appl Phys 2002;92(5):2451-6.

[17]

Zhang S, Fei Y, Chai BHT, Frantz E, Snyder DW, et al. Characterization of piezoelectric single crystal YCa4O(BO3)3 for high temperature applications. Appl Phys Lett 2008;92(20):202905.

[18]

Miao H, Li F. Realization of face-shear piezoelectric coefficient d36 in PZT ceramics via ferroelastic domain engineering. Appl Phys Lett 2015;107(12):122902.

[19]

Miao H, Chen X, Cai H, Li F. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics. J Appl Phys 2015;118(21):214102.

[20]

Yang J, Li Z, Xin X, Gao X, Yuan X, Wang Z, et al. Designing electromechanical metamaterial with full nonzero piezoelectric coefficients. Sci Adv 2019;5(11):eaax1782.

[21]

Li F, Miao H. Development of an apparent face-shear mode (d36) piezoelectric transducer for excitation and reception of shear horizontal waves via two-dimensional antiparallel poling. J Appl Phys 2016;120(14):144101.

[22]

Miao H, Huan Q, Li F. Excitation and reception of pure shear horizontal waves by using face-shear d24 mode piezoelectric wafers. Smart Mater Struct 2016;25(11):11LT01.

[23]

Huan Q, Miao H, Li F. A uniform-sensitivity omnidirectional shear horizontal (SH) wave transducer based on a thickness poled, thickness-shear (d15) piezoelectric ring. Smart Mater Struct 2017;26(8):08LT01.

[24]

Miao H, Xu L, Zhang H. SH guided wave excitation by an apparent face-shear mode (d36) piezocomposite transducer: experiments and theory. Smart Mater Struct 2019;28(11):115045.

[26]

Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review. Prog Mater Sci 2015;68:1-66.

[27]
Uchino K. Mathematical treatment of ferroelectrics. In: Ferroelectric devices. CRC Press: Taylor & Francis Group; 2010. p. 29-31.
[28]

Han P, Yan W, Tian J, Huang X, Pan H. Cut directions for the optimization of piezoelectric coefficients of lead magnesium niobate-lead titanate ferroelectric crystals. Appl Phys Lett 2005;86(5):052902.

[29]
Luan GD, Zhang JD, Wang RQ. Piezoelectric ceramics. In: Piezoelectric transducers and arrays. Peking University Press; 2005. p. 93-5.
[30]
IEEE standard on piezoelectricity, 176. New York: ANSI/IEEE Std; 1987.
[31]

Wu J, Hu Z, Gao X, Chu Z, Dong G, Wang Z, et al. Quantitative domain engineering for realizing d36 piezoelectric coefficient in tetragonal ceramics. Acta Mater 2020;188:416-23.

[32]
Wang C, Li J, Zhao M. Cutting of piezoelectric crystals. In: Physics on piezoelectric and ferroelectric. Science Press; 2009. p. 88-9.
[33]

Yan W, Han P, Jiang Z. Piezoelectric 36-shear mode for [011] poled 24% Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystal. J Appl Phys 2012;111(3):034107.

[34]

Pan C, Chen S-L, Bao X-Q. A new method for measuring the shear piezoelectric constant d15. Appl Acoust 2008;27(6):433-9.

[35]

Gao X, Wu J, Yu Y, Chu Z, Shi H, Dong S. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting. Adv Funct Mater 2018;28(30):1706895.

[36]

Goljahi S, Gallagher J, Zhang SJ, Luo J, Sahul R, Hackenberger W, et al. A relaxor ferroelectric single crystal cut resulting in large d312 and zero d311 for a shear mode accelerometer and related applications. Smart Mater Struct 2012;21:055005.

[37]

Yu Y, Wu J, Zhao T, Dong S, Gu H, Hu Y. MnO2 doped PSN-PZN-PZT piezoelectric ceramics for resonant actuator application. J Alloys Compd 2014;615:676-82.

[38]

Li G, Zheng L, Yin Q, Jiang B, Cao W. Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (Ca,Sr)Bi4Ti4O15 ceramics. J Appl Phys 2005;98:064108.

[39]

Zhou D, Kamlah M, Munz D. Effects of uniaxial prestress on the ferroelectric hysteretic response of soft PZT. J Eur Ceram Soc 2005;25(4):425-32.

[40]

Yimnirun R, Laosiritaworn Y, Wongsaenmai S. Effect of uniaxial compressive pre-stress on ferroelectric properties of soft PZT ceramics. J Phys D Appl Phys 2006;39(4):759-64.

[41]

Cui H, Hensleigh R, Yao D, Maurya D, Kumar P, Kang MG, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat Mater 2019;18(3):234-42.

Journal of Materiomics
Pages 254-263
Cite this article:
Wu J, Hu Z, Gao X, et al. Unconventional piezoelectric coefficients in perovskite piezoelectric ceramics. Journal of Materiomics, 2021, 7(2): 254-263. https://doi.org/10.1016/j.jmat.2020.10.004

52

Views

11

Crossref

N/A

Web of Science

13

Scopus

Altmetrics

Received: 30 July 2020
Revised: 15 September 2020
Accepted: 18 October 2020
Published: 21 October 2020
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return