AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Research progress in improving the performance of PEDOT:PSS/Micro- and Nano-textured Si heterojunction for hybrid solar cells

Guilu LinaZhongliang GaobTing GaoaYongcong ChenbQi GengaYingfeng LibLei ChenaMeicheng Lib( )
School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

● The important influence of PEDOT:PSS/Si interface contact on hybrid solar cell performance is reviewed.

● Fluid properties of PEDOT:PSS solution on Si surface with different Micro/Nano structures are studied.

● Three kinds of methods to improve the performance of PEDOT:PSS/Si hybrid solar cells are provided.

● Combining the optical and the electrical properties to improve the performance of PEDOT:PSS/Si hybrid solar cells.

Graphical Abstract

Abstract

Silicon-based hybrid solar cells (HSCs), especially PEDOT:PSS/Si HSC, have attracted the interest of researchers because they combine the advantages of organic and inorganic materials. A high quality PEDOT:PSS/Si heterojunction is the key to the good performance of PEDOT:PSS/Si HSC. However, as generally requisite to enhance light absorption for HSCs, Si Micro/Nano structures will reduce the interface contact quality between PEDOT:PSS and Si surface. The inferior interface contact quality will limit the separation efficiency of the photogenerated carriers. In this paper, we summarize the research progress in improving the interface contact between Si Micro/Nano structures and PEDOT:PSS film from three aspects: the optimization of Si Micro/Nano structures aimed to improve the fluid properties of PEDOT:PSS solution, the material modification of PEDOT:PSS and interface modification with the purpose to enlarge the heterojunction area and improve the electrical contact, and the specific deposition process of PEDOT:PSS solution developed to achieve the high filling rate of PEDOT:PSS on Si Micro/Nano structures. The insight of this paper is helpful for the preparation of high-quality heterojunction, which is vitally important for the development of high efficiency PEDOT:PSS/Si HSCs.

References

[1]

Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt 2014;4:96-9. https://doi.org/10.1109/jphotov.2013.2282737.

[2]

Mishima T, Taguchi M, Sakata H, Maruyama E. Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol Cells 2011;95:18-21. https://doi.org/10.1016/j.solmat.2010.04.030.

[3]

Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovolt 2014;4:1433-5. https://doi.org/10.1109/jphotov.2014.2352151.

[4]

Liu R, Sun B. Silicon-based organic/inorganic hybrid solar cells. Acta Chim Sinica 2015;73:225. https://doi.org/10.6023/a14100693.

[5]

Khang D-Y. Recent progress in Si-PEDOT:PSS inorganic–organic hybrid solar cells. J Phys D Appl Phys 2019;52:503002. https://doi.org/10.1088/1361-6463/ab3f64.

[6]

Chen L, Gao Z, Zheng Y, Cui M, Yan H, Wei D, et al. 14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer. Sol Energy 2018;174:549-55. https://doi.org/10.1016/j.solener.2018.09.035.

[7]

Zheng Y, Jiang B, Gao Z, Lin G, Sang N, Chen L, et al. Optimization of SnO2-based electron-selective contacts for Si/PEDOT:PSS heterojunction solar cells. Sol Energy 2019;193:502-6. https://doi.org/10.1016/j.solener.2019.09.077.

[8]

Fan B, Peng-Feil F, Peng C, Ruil H, Rui-Ke L, Zhi-Rong Z, et al. Micro-nano structures of silicon and their applications in novel solar cells. J Infrared Millim Waves 2015;34:471-8. https://doi.org/10.11972/j.issn.1001-9014.2015.04.016.

[9]

Sun Z, He Y, Xiong B, Chen S, Li M, Zhou Y, et al. Performance-enhancing approaches for PEDOT:PSS-Si hybrid solar cells. Angew Chem Int Ed Engl 2019. https://doi.org/10.1002/anie.201910629.

[10]

Li Y, Li M, Fu P, Li R, Song D, Shen C, et al. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells. Sci Rep 2015;5:11532. https://doi.org/10.1038/srep11532.

[11]

Li Y, Liu W, Luo Y, Cui M, Li M. Oxidation of silicon nanowire can transport much more light into silicon substrate. Optic Express 2018;26:A19-29. https://doi.org/10.1364/OE.26.000A19.

[12]

Li Y, Li M, Li R, Fu P, Wang T, Luo Y, et al. Exact comprehensive equations for the photon management properties of silicon nanowire. Sci Rep 2016;6:24847. https://doi.org/10.1038/srep24847.

[13]

Bai F, Li M, Fu P, Li R, Gu T, Huang R, et al. Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering. Apl Mater 2015;3:056101. https://doi.org/10.1063/1.4921040.

[14]

Li Y, Li M, Song D, Liu H, Jiang B, Bai F, et al. Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells. Nanomater Energy 2015;11:756-64. https://doi.org/10.1016/j.nanoen.2014.11.054.

[15]

Thomas JP, Zhao L, McGillivray D, Leung KT. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition. J Mater Chem 2014;2:2383-9. https://doi.org/10.1039/c3ta14590e.

[16]

Chen B, Chen J, Shen Y, Ge K, Guo J, Li F, et al. Magnesium thin film as a doping-free back surface field layer for hybrid solar cells. Appl Phys Lett 2017;110:133504. https://doi.org/10.1063/1.4979345.

[17]

Yang Z, Lin H, Sheng J, Yang X, Wang W, Chee KWA, et al. Design principles of silicon heterojunction solar cells with dopant-free interdigitated back contacts. Solar RRL 2019;3:1900230. https://doi.org/10.1002/solr.201900230.

[18]

Schinke C, Christian Peest P, Schmidt J, Brendel R, Bothe K, Vogt MR, et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv 2015;5:067168. https://doi.org/10.1063/1.4923379.

[19]

Green MA. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol Energy Mater Sol Cells 2008;92:1305-10. https://doi.org/10.1016/j.solmat.2008.06.009.

[20]

Bai F, Li M, Huang R, Li Y, Trevor M, Musselman KP. A one-step template-free approach to achieve tapered silicon nanowire arrays with controllable filling ratios for solar cell applications. RSC Adv 2014;4:1794-8. https://doi.org/10.1039/c3ra45473h.

[21]

Li Y, Li M, Li R, Fu P, Chu L, Song D. Method to determine the optimal silicon nanowire length for photovoltaic devices. Appl Phys Lett 2015;106:091908. https://doi.org/10.1063/1.4914372.

[22]

Li Y, Li M, Li R, Fu P, Jiang B, Song D, et al. Linear length-dependent light-harvesting ability of silicon nanowire. Optic Commun 2015;355:6-9. https://doi.org/10.1016/j.optcom.2015.06.027.

[23]

He J, Gao P, Yang Z, Yu J, Yu W, Zhang Y, et al. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv Mater 2017;29:1606321. https://doi.org/10.1002/adma.201606321.

[24]

Dai H, Li M, Li Y, Yu H, Bai F, Ren X. Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface. Optic Express 2012;20:A502-9. https://doi.org/10.1364/OE.20.00A502.

[25]

Jeong H, Song H, Pak Y, Kwon IK, Jo K, Lee H, et al. Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Adv Mater 2014;26:3445-50. https://doi.org/10.1002/adma.201305394.

[26]

Bai F, Li M, Rui H, Song D, Jiang B, Li Y. Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching. Nanoscale Res Lett 2012;7:557. https://doi.org/10.1186/1556-276X-7-557.

[27]

Jiang B, Li M, Liang Y, Bai Y, Song D, Li Y, et al. Etching anisotropy mechanisms lead to morphology-controlled silicon nanoporous structures by metal assisted chemical etching. Nanoscale 2016;8:3085-92. https://doi.org/10.1039/c5nr07327h.

[28]

Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, et al. Hybrid silicon nanocone-polymer solar cells. Nano Lett 2012;12:2971-6. https://doi.org/10.1021/nl300713x.

[29]

Bai F, Zhang Y, Duan Z, Hoye R, Trevor M, Li Y, et al. Broadband antireflection property of silicon nanocone arrays with porous sidewalls fabricated by Ag-catalyzed etching. AIP Adv 2017;7:095006. https://doi.org/10.1063/1.4990456.

[30]

Jiang B, Li M, Song D, Li Y, Mwenya T. Facile deposition of ultrafine silver particles on silicon surface not submerged in precursor solutions for applications in antireflective layer. J Nanomater 2014;2014:1-6. https://doi.org/10.1155/2014/351360.

[31]

Duan Z, Li M, Mwenya T, Fu P, Li Y, Song D. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell. Appl Optic 2016;55:117-21. https://doi.org/10.1364/AO.55.000117.

[32]

Li Y, Yue L, Luo Y, Liu W, Li M. Light harvesting of silicon nanostructure for solar cells application. Optic Express 2016;24:A1075-82. https://doi.org/10.1364/OE.24.0A1075.

[33]

Duan Z, Li M, Mwenya T, Bai F, Li Y, Song D. Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells. Phys Status Solidi 2014;211:2527-31. https://doi.org/10.1002/pssa.201431189.

[34]

Gao Z, Lin G, Zheng Y, Sang N, Li Y, Chen L, Li M. Excellent light-capture capability of trilobal SiNW for ultra-high JSC in single-nanowire solar cells. Photon Res 2020;8:995. https://doi.org/10.1364/prj.385867.

[35]

Bai F, Li M, Song D, Yu H, Jiang B, Li Y. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature. J Solid State Chem 2012;196:596-600. https://doi.org/10.1016/j.jssc.2012.07.029.

[36]

Geng X, Li M, Zhao L, Bohn PW. Metal-assisted chemical etching using tollen’s reagent to deposit silver nanoparticle catalysts for fabrication of quasi-ordered silicon micro/nanostructures. J Electron Mater 2011;40:2480-5. https://doi.org/10.1007/s11664-011-1771-1.

[37]

Zou Z, Liu W, Wang D, Liu Z, Jiang E, Wu S, et al. Electron-selective quinhydrone passivated back contact for high-efficiency silicon/organic heterojunction solar cells. Sol Energy Mater Sol Cells 2018;185:218-25. https://doi.org/10.1016/j.solmat.2018.05.041.

[38]

He J, Gao P, Ling Z, Ding L, Yang Z, Ye J, et al. High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation. ACS Nano 2016;10:11525-31. https://doi.org/10.1021/acsnano.6b07511.

[39]

Aouida S, Benabderrahmane Zaghouani R, Bachtouli N, Bessais B. Hydrogen passivation of silicon nanowire structures. Appl Surf Sci 2016;370:49-52. https://doi.org/10.1016/j.apsusc.2016.02.116.

[40]

Royea WJ, Juang A, Lewis NS. Preparation of air-stable, low recombination velocity Si„111… surfaces through alkyl termination. Appl Phys Lett 2000;77:1988-90. https://doi.org/10.1063/1.1312203.

[41]

Avasthi S, Qi Y, Vertelov GK, Schwartz J, Kahn A, Sturm JC. Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone. Appl Phys Lett 2010;96:222109. https://doi.org/10.1063/1.3429585.

[42]

Nam YH, Song JW, Park MJ, Sami A, Lee JH. Ultrathin Al2O3 interface achieving an 11.46% efficiency in planar n-Si/PEDOT:PSS hybrid solar cells. Nanotechnology 2017;28:155402. https://doi.org/10.1088/1361-6528/aa63b9.

[43]

Liu Q, Khatri I, Ishikawa R, Fujimori A, Ueno K, Manabe K, et al. Improved photovoltaic performance of crystalline-Si/organic Schottky junction solar cells using ferroelectric polymers. Appl Phys Lett 2013;103:163503. https://doi.org/10.1063/1.4826323.

[44]

Sheng J, Fan K, Wang D, Han C, Fang J, Gao P, et al. Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. ACS Appl Mater Interfaces 2014;6:16027-34. https://doi.org/10.1021/am503949g.

[45]

Zhang X, Yang D, Yang Z, Guo X, Liu B, Ren X, et al. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Sci Rep 2016;6:35091. https://doi.org/10.1038/srep35091.

[46]

Zhang Y, Cui W, Zhu Y, Zu F, Liao L, Lee S-T, et al. High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy Environ Sci 2015;8:297-302. https://doi.org/10.1039/c4ee02282c.

[47]

Yoon S-S, Khang D-Y. High efficiency (>17%) Si-organic hybrid solar cells by simultaneous structural, electrical, and interfacial engineering via low-temperature processes. Adv Energy Mater 2018;8:1702655. https://doi.org/10.1002/aenm.201702655.

[48]

Li Y, Fu P, Li R, Li M, Luo Y, Song D. Ultrathin flexible planar crystalline-silicon/polymer hybrid solar cell with 5.68% efficiency by effective passivation. Appl Surf Sci 2016;366:494-8. https://doi.org/10.1016/j.apsusc.2016.01.129.

[49]

Gao Z, Lin G, Chen Y, Zheng Y, Sang N, Li Y, et al. Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells. Sol Energy 2020;205:275-81. https://doi.org/10.1016/j.solener.2020.05.065.

[50]

Yablonovitch E, Cody GD. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans Electron Dev 1982;29:300-5. https://doi.org/10.1109/t-ed.1982.20700.

[51]

Zhang J, Zhang Y, Song T, Shen X, Yu X, Lee ST, et al. High-performance ultrathin organic-inorganic hybrid silicon solar cells via solution-processed interface modification. ACS Appl Mater Interfaces 2017;9:21723-9. https://doi.org/10.1021/acsami.7b02140.

[52]

Yang Z, Gao P, He J, Chen W, Yin W-Y, Zeng Y, et al. Tuning of the contact properties for high-efficiency Si/PEDOT:PSS heterojunction solar cells. ACS Energy Lett 2017;2:556-62. https://doi.org/10.1021/acsenergylett.7b00015.

[53]

Zhang J, Zhang Y, Zhang F, Sun B. Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Appl Phys Lett 2013;102:013501. https://doi.org/10.1063/1.4773368.

[54]

Wang X, Yang Z, Gao P, Yang X, Zhou S, Wang D, et al. Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays. Optic Express 2017;25:10464-72. https://doi.org/10.1364/OE.25.010464.

[55]

Hossain J, Ohki T, Ichikawa K, Fujiyama K, Ueno K, Fujii Y, et al. Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells. Jpn J Appl Phys 2016;55:031601. https://doi.org/10.7567/jjap.55.031601.

[56]

Islam ATMS, Karim ME, Rajib A, Nasuno Y, Ukai T, Kurosu S, et al. Chemical mist deposition of organic for efficient front- and back-PEDOT:PSS/crystalline Si heterojunction solar cells. Appl Phys Lett 2019;114:193901. https://doi.org/10.1063/1.5096579.

[57]

Wu S, Cui W, Aghdassi N, Song T, Duhm S, Lee S-T, et al. Nanostructured Si/organic heterojunction solar cells with high open-circuit voltage via improving junction quality. Adv Funct Mater 2016;26:5035-41. https://doi.org/10.1002/adfm.201600441.

[58]

Rui Y, Zhang T, Zhu D, Feng Y, Cartwright AN, Swihart MT, et al. Improved performance of silicon nanowire-based solar cells with diallyl disulfide passivation. J Phys Chem C 2019;123:4664-73. https://doi.org/10.1021/acs.jpcc.8b10542.

[59]

Liang Z, Su M, Wang H, Gong Y, Xie F, Gong L, et al. Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance. ACS Appl Mater Interfaces 2015;7:5830-6. https://doi.org/10.1021/am508879b.

[60]

He L, Lai D, Wang H, Jiang C. Rusli, High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids. Small 2012;8:1664-8. https://doi.org/10.1002/smll.201102095.

[61]

Bai F, Li M, Huang R, Yu Y, Gu T, Chen Z, et al. Wafer-scale fabrication of uniform Si nanowire arrays using the Si wafer with UV/Ozone pretreatment. J Nano Res 2013;15:1915. https://doi.org/10.1007/s11051-013-1915-8.

[62]

Liu R, Sun T, Liu J, Wu S, Sun B. Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching. Nanotechnology 2016;27:254006. https://doi.org/10.1088/0957-4484/27/25/254006.

[63]

Wang X, Liu Z, Yang Z, He J, Yang X, Yu T, et al. Heterojunction hybrid solar cells by formation of conformal contacts between PEDOT:PSS and periodic silicon nanopyramid arrays. Small 2018;14:e1704493. https://doi.org/10.1002/smll.201704493.

[64]

He J, Yang Z, Liu P, Wu S, Gao P, Wang M, et al. Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications. Adv Energy Mater 2016;6:1501793. https://doi.org/10.1002/aenm.201501793.

[65]

Tang Q, Shen H, Yao H, Gao K, Jiang Y, Zheng C, et al. Potential of quasi-inverted pyramid with both efficient light trapping and sufficient wettability for ultrathin c -Si/PEDOT:PSS hybrid solar cells. Sol Energy Mater Sol Cells 2017;169:226-35. https://doi.org/10.1016/j.solmat.2017.05.025.

[66]

Liu X, Da Y, Sun B, Xuan Y. The effects of nano/micro-scale hierarchical structures on the performance of silicon/organic heterojunction solar cells. Sol Energy 2019;182:1-8. https://doi.org/10.1016/j.solener.2019.02.039.

[67]

Ahmed YS, Hadjersi T, Khelifati N, Manseri A, Menari H. Binary-structured Si surface modification by an alkaline treatment: application to poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)/silicon heterojunction solar cells. Siliconindia 2020:1-7. https://doi.org/10.1007/s12633-020-00419-z.

[68]

Da Y, Liu X, Xuan Y, Li Q. Photon management effects of hybrid nanostructures/microstructures for organic-silicon heterojunction solar cells. Int J Energy Res 2018;42:4875-90. https://doi.org/10.1002/er.4249.

[69]

Vilan A, Yaffe O, Biller A, Salomon A, Kahn A, Cahen D. Molecules on si: electronics with chemistry. Adv Mater 2010;22:140-59. https://doi.org/10.1002/adma.200901834.

[70]

Kayes BM, Atwater HA, Lewis NS. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys 2005;97:114302. https://doi.org/10.1063/1.1901835.

[71]

Dutta M, Fukata N. Low-temperature UV ozone-treated high efficiency radial p-n junction solar cells: N-Si NW arrays embedded in a p-Si matrix. Nanomater Energy 2015;11:219-25. https://doi.org/10.1016/j.nanoen.2014.10.028.

[72]

Wang H, Wang J, Hong L, Tan YH, Tan CS. Rusli, thin film silicon nanowire/PEDOT:PSS hybrid solar cells with surface treatment. Nanoscale Res Lett 2016;11:311. https://doi.org/10.1186/s11671-016-1527-1.

[73]

Pudasaini PR, Sharma M, Ruiz-Zepeda F, Ayon AA. Efficiency improvement of a nanostructured polymer solar cell employing atomic layer deposited Al2O3 as a passivation layer. Microelectron Eng 2014;119:6-10. https://doi.org/10.1016/j.mee.2014.01.015.

[74]

Pudasaini PR, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon AA. High efficiency hybrid silicon nanopillar-polymer solar cells. ACS Appl Mater Interfaces 2013;5:9620-7. https://doi.org/10.1021/am402598j.

[75]

Gelloz B, Sano H, Boukherroub R, Wayner DDM, Lockwood DJ, Koshida N. Stabilization of porous silicon electroluminescence by surface passivation with controlled covalent bonds. Appl Phys Lett 2003;83:2342-4. https://doi.org/10.1063/1.1613812.

[76]

Kim DR, Lee CH, Rao PM, Cho IS, Zheng X. Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett 2011;11:2704-8. https://doi.org/10.1021/nl2009636.

[77]

Bashouti MY, Stelzner T, Berger A, Christiansen S, Haick H. Chemical passivation of silicon nanowires with C1-C6 alkyl chains through covalent Si-C bonds. J Phys Chem C 2008;112:19168-72. https://doi.org/10.1021/jp8077437.

[78]

Zhang F, Liu D, Zhang Y, Wei H, Song T, Sun B. Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell. ACS Appl Mater Interfaces 2013;5:4678-84. https://doi.org/10.1021/am302893r.

[79]

Zhang F, Sun B, Song T, Zhu X, Lee S. Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures. Chem Mater 2011;23:2084-90. https://doi.org/10.1021/cm103221a.

[80]

Thomas JP, Leung KT. Defect-minimized PEDOT:PSS/planar-Si solar cell with very high efficiency. Adv Funct Mater 2014;24:4978-85. https://doi.org/10.1002/adfm.201400380.

[81]

Thomas JP, Zhao L, Abd-Ellah M, Heinig NF, Leung KT. Interfacial micropore defect formation in PEDOT:PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging. Anal Chem 2013;85:6840-5. https://doi.org/10.1021/ac401084x.

[82]

He L, Jiang C, Wang H, Lai D. Rusli, High efficiency planar Si/organic heterojunction hybrid solar cells. Appl Phys Lett 2012;100:073503. https://doi.org/10.1063/1.3684872.

[83]

Liu Q, Ono M, Tang Z, Ishikawa R, Ueno K, Shirai H. Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells. Appl Phys Lett 2012;100:183901. https://doi.org/10.1063/1.4709615.

[84]

Jackle S, Liebhaber M, Niederhausen J, Buchele M, Felix R, Wilks RG, et al. Unveiling the hybrid n-Si/PEDOT:PSS interface. ACS Appl Mater Interfaces 2016;8:8841-8. https://doi.org/10.1021/acsami.6b01596.

[85]

Nasybulin E, Wei S, Kymissis I, Levon K. Effect of solubilizing agent on properties of poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited from aqueous solution. Electrochim Acta 2012;78:638-43. https://doi.org/10.1016/j.electacta.2012.06.083.

[86]

Lu W, Wang C, Yue W, Chen L. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells. Nanoscale 2011;3:3631-4. https://doi.org/10.1039/c1nr10629e.

[87]

Jiang X, Zhang P, Zhang J, Wang J, Li G, Fang X, et al. High performance of PEDOT:PSS/n-Si solar cells based on textured surface with AgNWs electrodes. Nanoscale Res Lett 2018;13:53. https://doi.org/10.1186/s11671-018-2462-0.

[88]

Subramani T, Hsueh C-C, Syu H-J, Liu C-T, Yang S-T, Lin C-F. Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells. RSC Adv 2016;6:12374-81. https://doi.org/10.1039/c5ra23109d.

[89]

Cui W, Wu S, Chen F, Xia Z, Li Y, Zhang XH, et al. Silicon/organic heterojunction for photoelectrochemical energy conversion photoanode with a record photovoltage. ACS Nano 2016;10:9411-9. https://doi.org/10.1021/acsnano.6b04385.

[90]

Xia Z, Gao P, Sun T, Wu H, Tan Y, Song T, et al. Buried MoOx/Ag electrode enables high-efficiency organic/silicon heterojunction solar cells with a high fill factor. ACS Appl Mater Interfaces 2018;10:13767-73. https://doi.org/10.1021/acsami.8b02403.

[91]

He J, Hossain MA, Lin H, Wang W, Karuturi SK, Hoex B, et al. 15% efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as asymmetric heterocontact. ACS Nano 2019;13:6356-62. https://doi.org/10.1021/acsnano.9b01754.

[92]

He J, Wan Y, Gao P, Tang J, Ye J. Over 16.7% efficiency organic-silicon heterojunction solar cells with solution-processed dopant-free contacts for both polarities. Adv Funct Mater 2018;28:183901. https://doi.org/10.1002/adfm.201802192.

[93]

Um H-D, Choi D, Choi A, Seo JH, Seo K. Embedded metal electrode for organic–inorganic hybrid nanowire solar cells. ACS Nano 2017;11:6218-24. https://doi.org/10.1021/acsnano.7b02322.

[94]

Yu P, Tsai C-Y, Chang J-K, Lai C-C, Chen P-H, Lai Y-C, Tsai P-T, Li M-C, Pan H-T, Huang Y-Y. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 2013;7:10780-7. https://doi.org/10.1021/nn403982b.

[95]

Kou Y-S, Yang S-T, Thiyagu S, Liu C-T, Wu J-W, Lin C-F. Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells. Nanoscale 2016;8:5379-85. https://doi.org/10.1039/c5nr08724d.

[96]

Shen S, Zhang J, Zhou S, Han Y, Gao P, Sun B, et al. Nanostructured silicon-based heterojunction solar cells with double hole-transporting layers. Adv Electron Mater 2019;5:1800070. https://doi.org/10.1002/aelm.201800070.

[97]

Lee YT, Lin FR, Chen CH, Pei Z. A 14.7% organic/silicon nanoholes hybrid solar cell via interfacial engineering by solution-processed inorganic conformal layer. ACS Appl Mater Interfaces 2016;8:34537-45. https://doi.org/10.1021/acsami.6b10741.

[98]

He L, Jiang C, Rusli, Lai D, Wang H. Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells. Appl Phys Lett 2011;99:021104. https://doi.org/10.1063/1.3610461.

[99]

Chen C-Y, Wei T-C, Lai Y-C, Lee T-C. Passivating silicon-based hybrid solar cells through tuning PbI2 content of perovskite coatings. Appl Surf Sci 2020;511:145541. https://doi.org/10.1016/j.apsusc.2020.145541.

[100]

He J, Gao P, Yang Z, Yu J, Yu W, Zhang Y, et al. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv Mater 2017;29. https://doi.org/10.1002/adma.201606321.

[101]

Subramani T, Syu HJ, Liu CT, Hsueh CC, Yang ST, Lin CF. Low-pressure-assisted coating method to improve interface between PEDOT:PSS and silicon nanotips for high-efficiency organic/inorganic hybrid solar cells via solution process. ACS Appl Mater Interfaces 2016;8:2406-15. https://doi.org/10.1021/acsami.5b11692.

[102]

Cao R, Gao Z, Cui M, Liu W, Zheng Y, Luo Y, et al. Research progress of Si/PEDOT:PSS hybrid solar cells. J Funct Mater 2019;50:1006-17. https://doi.org/10.3969/j.issn.1001-9731.2019.01.002.

Journal of Materiomics
Pages 1161-1179
Cite this article:
Lin G, Gao Z, Gao T, et al. Research progress in improving the performance of PEDOT:PSS/Micro- and Nano-textured Si heterojunction for hybrid solar cells. Journal of Materiomics, 2021, 7(5): 1161-1179. https://doi.org/10.1016/j.jmat.2020.12.013

26

Views

16

Crossref

14

Web of Science

15

Scopus

Altmetrics

Received: 12 October 2020
Revised: 15 December 2020
Accepted: 18 December 2020
Published: 12 April 2021
© 2020 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return