AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review

Junye Chenga,c,1Huibin Zhangb,1Yingfei Xiongb,1Lingfeng GaodBo WendHassan RazacHao Wanga( )Guangping ZhengcDeqing Zhangb( )Han Zhangd( )
Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
School of Materials Science and Engineering, Qiqihar University, Qiqihar, 161006, China
Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China

1 These authors contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

· First comprehensive review of electromagnetic wave absorber designs from principles to performance.

Abstract

The construction of structures with multiple interfaces and dielectric/magnetic heterostructures enables the design of materials with unique physical and chemical properties, which has aroused intensive interest in scientific and technological fields. Especially, for electromagnetic (EM) wave absorption, enhanced interface polarization and improved impedence match with high Snoek's limitation could be achieved by multiple interfaces and dielectric/magnetic heterostructures, respectively, which are benificial to high-efficiency electromagnetic wave absorption (EWA). However, by far, the principles in the design or construction of structures with multiple interfaces and dielectric/magnetic heterostructures, and the relationships between those structures or heterostructures and their EWA performance have not been fully summarized and reviewed. This article aims to provide a timely review on the research progresses of high-efficency EM wave absorbers with multiple interfaces and dielectric/magnetic heterostructures, focusing on various promising EWA materials. Particularly, EM attenuation mechanisms in those structures with multiple interfaces and dielectric/magnetic heterostructures are discussed and generalized. Furthermore, the changllenges and future developments of EM wave absorbers based on those structures are proposed.

References

[1]

Zhang X, Rao Y, Guo J, Qin G. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 2016;96: 972-9.

[2]

Cheng YF, Bi H, Wang C, Cao Q, Jiao W, Che R. Dual-ligand mediated one-pot self-assembly of Cu/ZnO core/shell structures for enhanced microwave absorption. RSC Adv 2016;6: 41724-33.

[3]

Wu G, Cheng Y, Xie Q, Jia Z, Xiang F, Wu H. Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater Lett 2015;144: 157-60.

[4]

Cheng JY, Zhao B, Zheng S, Yang J, Zhang DQ, Cao MS. Enhanced microwave absorption performance of polyaniline-coated CNT hybrids by plasma-induced graft polymerization. Appl Phys A 2015;119: 379-86.

[5]

Zhang DQ, Liang S, Chai JX, Liu TT, Yang XY, Wang H. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J Phys Chem Solid 2019;134: 77-82.

[6]

Zhang DQ, Cheng JY, Yang XY, Zhao B, Cao MS. Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. J Mater Sci 2014;49: 7221-30.

[7]

Wu H, Wu G, Wu Q, Wang L. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere. Mater Char 2014;97: 18-26.

[8]

Gandhi OP. Electromagnetic fields: human safety issues. Rev. Biomed. Eng 2002;4: 211-34.

[9]

Aghaei M, Thayoob YHM, Mahdaviasl S, Darzi S, Imamzai M. A review on the impact of the electromagnetic radiation (EMR) on the human's health. National Graduate Conference 2012;8.

[10]

Zhang L, Yu X, Hu H, Li Y, Wu M, Wang Z. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci Rep 2015;5: 92-8.

[11]

Shi ZC, Fan RH, Zhang ZD, Qian L, Gao M, Zhang M. Random composites of nickel networks supported by porous alumina toward double negative materials. Adv. Materials 2012;24: 2349-52.

[12]

Cao MS, Song WL, Hou ZL, Wen B, Yuan J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010;48: 788-96.

[13]

Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 2012;111: 61301.

[14]
Cheng LF, Ong CK, Neo CP, Varadan VV, Varadan VK. Microwave electronics.USA: Wiley; 2004.
[15]
Sebastian MT. Dielectric materials for wireless communication. 2010.
[16]

Ohkoshi Si, Kuroki S, Sakurai S, Matsumoto K, Sato K, Sasaki S. A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets. Angew. Chem. Int. 2007;46:8392-5.

[17]

Namai A, Sakurai S, Nakajima M, Suemoto T, Matsumoto K, Goto M. Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J Am Chem Soc 2009;131:1170-3.

[18]

Xia T, Chi Z, Oyler NA, Chen X. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Materials 2013;25:6905-10.

[19]

Liu J, Che R, Chen H, Fan Z, Feng X, Wu Q. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012;8:1214-21.

[20]

Che RC, Peng LM, Duan XF, Chen Q, Liang XL. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 2004;16:401-5.

[21]

Zhang XF, Dong XL, Huang H, Liu YY, Wang WN, Zhu XG. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl Phys Lett 2006;89:53115.

[22]

Pan H, Cheng X, Zhang C, Gong C, Yu L, Zhang J. Preparation of Fe2Ni2N/SiO2 nanocomposite via a two-step route and investigation of its electromagnetic properties. Appl Phys Lett 2013;102:12410.

[23]

Snoek JL. Gyromagnetic resonance in ferrites. Nature 1947;160:90.

[24]

Zhang XF, Guan PF, Dong XL. Transform between the permeability and permittivity in the close-packed Ni nanoparticles. Appl Phys Lett 2010;97:33107.

[25]

Lee CC, Chen DH. Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl Phys Lett 2007;90:193102.

[26]

Zhang XF, Guan PF, Dong XL. Multidielectric polarizations in the core/shell Co/graphite nanoparticles. Appl Phys Lett 2010;96:223111.

[27]

Zhang X, Guan P, Guo J. Dumbbell-like Fe3O4-Au nanoparticles for ultrabroadband electromagnetic losses by heterogeneous interfacial polarizations. Part Part Syst Char 2013;30:842-6.

[28]

Guan PF, Zhang XF, Guo JJ. Assembled Fe3O4 nanoparticles on graphene for enhanced electromagnetic wave losses. Appl Phys Lett 2012;101:153108.

[29]

Liu J, Qiao SZ, Budi Hartono S, Lu GQ. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. 2010;49:4981-5.

[30]

Zhang L, Wang T, Li L, Wang C, Su Z, Li J. Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4-mesoporous silica yolk-shell nanocapsules for siRNA delivery. ChemComm 2012;48:8706-8.

[31]

Zhao B, Guo X, Zhao W, Deng J, Fan B, Shao G. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017;10:331-43.

[32]

Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun 2013;4:1331.

[33]

Liu J, Xu J, Che R, Chen H, Liu M, Liu Z. Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chem. Eur J 2013;19:6746-52.

[34]

Tian C, Du Y, Xu P, Qiang R, Wang Y, Ding D. Constructing uniform core–shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 2015;7:20090-9.

[35]

Zhao B, Shao G, Fan B, Zhao W, Zhang R. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys Chem Chem Phys 2015;17:253-9.

[36]

Ding D, Wang Y, Li X, Qiang R, Xu P, Chu W. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017;111:722-32.

[37]

Bi J, Gu Y, Zhang Z, Wang S, Li M, Zhang Z. Core–shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss. Mater Des 2016;89:933-40.

[38]

Liang C, Wang Z. Controllable fabricating dielectric–dielectric SiC@C core–shell nanowires for high-performance electromagnetic wave attenuation. ACS appl. Mater. Interfaces 2017;9:40690-6.

[39]

Zhao B, Shao G, Fan B, Zhao W, Xie Y, Zhang R. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J Mater Chem A 2015;3:10345-52.

[40]

Shi XL, Cao MS, Yuan J, Fang XY. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl Phys Lett 2009;95:163108.

[41]

Xu HL, Bi H, Yang RB. Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J Appl Phys 2012;111. 07A522.

[42]

Zhou M, Zhang X, Wei J, Zhao S, Wang L, Feng B. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J Phys Chem C 2011;115:1398-402.

[43]

Mu C, Song J, Wang B, Wen F, Zhang C, Wang C. Facile-synthesized carbonaceous photonic crystals/magnetic particle nanohybrids with heterostructure as an excellent microwave absorber. J Alloys Compd 2018;74:814-20.

[44]

Li X, Qian Y, Liu T, Cao F, Zang Z, Sun X, et al. Enhanced lithium and electron diffusion of LiFePO4 cathode with two-dimensional Ti3C2 MXene nanosheets. J Mater Sci 2018;53(15):11078-90.

[45]

Zhu Z, Sun X, Xue H, Guo H, Fan X, Pan X. Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J Mater Chem C 2014;2(32):6582-91.

[46]

Pan G, Zhu J, Ma S, Sun G, Yang X. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl Mater Interfaces 2013;5:12716-24.

[47]

Yuan L, Xiangxuan L, Rong L, Wu W, Xuanjun W. Design and fabrication of carbon fiber/carbonyl iron core–shell structure composites as high-performance microwave absorbers. RSC Adv 2015;5:8713-20.

[48]

Pawar SP, Gandi M, Bose S. High performance electromagnetic wave absorbers derived from PC/SAN blends containing multiwall carbon nanotubes and Fe3O4 decorated onto graphene oxide sheets. RSC Adv 2016;6:37633-45.

[49]

Huang L, Chen C, Li Z, Zhang Y, Zhang H, Lu J. Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 2019;31:162001.

[50]

Yang Z, Xue T, Yu L, Ji G, Xu G, Xu ZJ. Nanocasting synthesis of Fe3O4@HTC nanocapsules and their superior electromagnetic properties. RSC Adv 2016;6:20386-91.

[51]

Liu J, Wang Z, Rehman S, Bi H. Uniform core–shell PPy@carbon microsphere composites with a tunable shell thickness: the synthesis and their excellent microwave absorption performances in the X-band. RSC Adv 2017;7:53104-10.

[52]

Lü Y, Wang Y, Li H, Lin Y, Jiang Z, Xie Z. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl Mater Interfaces 2015;7:13604-11.

[53]

Wu H, Wu G, Ren Y, Yang L, Wang L, Li X. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater Chem C 2015;3:7677-90.

[54]

Wang S, Xu Y, Fu R, Zhu H, Jiao Q, Feng T. Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett 2019;11:76.

[55]

Dai S, Cheng Y, Quan B, Liang X, Liu W, Yang Z. Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 2018;10:6945-53.

[56]

Yan J, Huang Y, Yan Y, Ding L, Liu P. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl Mater Interfaces 2019;11:40781-92.

[57]

Zhang DQ, Liu TT, Shu JC, Liang S, Wang XX, Cheng JY. Self-assembly construction of WS2-rGO architecture with green EMI shielding. ACS Appl Mater Interfaces 2019;11:26807-16.

[58]

Zhang DQ, Liu TT, Cheng JY, Chai JX, Yang XY, Wang H. Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides. Nanotechnology 2019;30:445708.

[59]

Qiao M, Lei X, Ma Y, Tian L, He X, Su K. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018;11:1500-19.

[60]

Zhang DQ, Liu TT, Zhang M, Zhang H, Yang XY, Cheng JY. Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 2020;31:325703.

[61]

Zhang DQ, Liu TT, J, Cheng Y, Cao Q, Zheng GP, Liang S. Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett 2019;11:38.

[62]

Wen B, Cao MS, Lu MM, Cao WQ, Shi HL, Liu J, Wang XX, Jin HB, Fang XY, Wang WZ, Yuan J. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 2014;26. 3357–3357.

[63]

Cao MS, Wang XX, Zhang M, Cao WQ, Fang XY, Yuan J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv Mater 2020;32:1907156.

[64]

Cao MS, Wang XX, Cao WQ, Fang XY, Wen B, Yuan J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018;14:1800987.

[65]

Wang H, Dai Y, Gong W, Geng D, Ma S, Li D. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl Phys Lett 2013;102:223113.

[66]

Song WL, Cao MS, Hou ZL, Fang XY, Shi XL, Yuan J. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl Phys Lett 2009;94:233110.

[67]

Song WL, Cao MS, Hou ZL, Yuan J, Fang XY. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scripta Mater 2009;61:201-4.

[68]

Sun G, Dong B, Cao M, Wei B, Hu C. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Materials 2011;23:1587-93.

[69]

Tong G, Wu W, Guan J, Qian H, Yuan J, Li W. Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties. J Alloys Compd 2011;509:4320-6.

[70]

Wang L, Huang Y, Sun X, Huang H, Liu P, Zong M. Synthesis and microwave absorption enhancement of graphene@ Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014;6:3157-64.

[71]

Yang HJ, Cao WQ, Zhang DQ, Su TJ, Shi HL, Wang WZ. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces 2015;7:7073-7.

[72]

Zhang Y, Wang X, Cao M. Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018;11:1426-36.

[73]

Zhang X, Xu J, Liu X, Zhang S, Yuan H, Zhu C. Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon 2019;155:233-42.

[74]

Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Materials 2015;27:2049-53.

[75]

Cheng Y, Zhao H, Lv H, Shi T, Ji G, Hou Y. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater 2020;6:1900796.

[76]

Lu MM, Cao WQ, Shi HL, Fang XY, Yang J, Hou ZL. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A 2014;2:10540.

[77]

Cheng Y, Hu P, Zhou S, Yan L, Sun B, Zhang X. Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam. Carbon 2018;132:430-43.

[78]

Li W, Qi H, Niu X, Guo F, Chen X, Wang L. Fe–Fe3C/C microspheres as a lightweight microwave absorbent. RSC Adv 2016;6:24820-6.

[79]

Zhang N, Huang Y, Zong M, Ding X, Li S, Wang M. Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem Eng J 2017;308:214-21.

[80]

Wang G, Gao Z, Wan G, Lin S, Yang P, Qin Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014;7:704-16.

[81]

Li Q, Zhao Y, Wang L, Zhang J, Li X, Che R. 3D conductive network wrapped CeO2-x Yolk@Shell hybrid microspheres for selective-frequency microwave absorption. Carbon 2020;162:86-94.

[82]

Li XP, Deng Z, Li Y, Zhang HB, Zhao S, Zhang Y. Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption. Carbon 2019;147:172-81.

[83]

Wang YY, Zhou ZH, Zhou CG, Sun WJ, Gao JF, Dai K. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl Mater Interfaces 2020;12:8704-12.

[84]

Han M, Yin X, Wu H, Hou Z, Song C, Li X. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 2016;8:21011-9.

[85]

Zhou C, Wu C, Yan M. A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption. Chem Eng J 2019;370:988-96.

[86]

Zhao Y, Liu L, Han J, Wu W, Tong G. Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high Snoek's limit. J Alloys Compd 2017;728:100-11.

[87]

Liu P, Gao S, Wang Y, Zhou F, Huang Y, Luo J. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos B Eng 2020;202:108406.

[88]

Zhang B, Wang J, Peng J, Sun J, Su X, Zou Y. Double-shell PANS@PANI@Ag hollow microspheres and graphene dispersed in epoxy with enhanced microwave absorption. J Mater Sci Mater Electron 2019;30:9785-97.

[89]

Lu B, Dong XL, Huang H, Zhang XF, Zhu XG, Lei JP. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J Magn Magn Mater 2008;320:1106-11.

[90]

Chen YJ, Gao P, Zhu CL, Wang RX, Wang LJ, Cao MS. Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J Appl Phys 2009;106:54303.

[91]

Wu T, Liu Y, Zeng X, Cui T, Zhao Y, Li Y. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Interfaces 2016;8:7370.

[92]

Guo Y, Jian X, Zhang L, Mu C, Yin L, Xie J. Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem Eng J 2020;384:123371.

[93]

Dong S, Zhang W, Zhang X, Hu P, Han J. Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem Eng J 2018;354:767-76.

[94]

Zhao S, Gao Z, Chen C, Wang G, Zhang B, Chen Y. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 2016;98:196-203.

[95]

Zhao S, Yan L, Tian X, Liu Y, Chen C, Li Y. Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 2018;11:530-41.

[96]

Liu J, You W, Yu J, Liu X, Zhang X, Guo J. Electron holography of yolk–shell Fe3O4@mSiO2 microspheres for use in microwave absorption. ACS Appl. Nano Mater 2019;2:910-6.

[97]

Yu M, Liang C, Liu M, Liu X, Yuan K, Cao H. Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorption. J Mater Chem C 2014;2:7275-83.

[98]

Cheng Y, Li Z, Li Y, Dai S, Ji G, Zhao H. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 2018;127:643-52.

[99]

Liu J, Cheng J, Che R, Xu J, Liu M, Liu Z, Synthesis, Absorption Microwave. Properties of yolk–shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl Mater Interfaces 2013;5:2503-9.

[100]

Wang L, Yu X, Li X, Zhang J, Wang M, Che R. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem Eng J 2020;383:123099.

[101]

Wang R, He M, Zhou Y, Nie S, Wang Y, Liu W. Metal−organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 2020;156:378-88.

[102]

Li Q, Liu J, Zhao Y, Zhao X, You W. “Matryoshka doll”-like CeO2 microspheres with hierarchical structure to achieve significantly enhanced microwave absorption performance. ACS Appl Mater Interfaces 2018;10:27540-7.

[103]

Chen D, Quan H, Wang GS, Guo L. Hollow α-MnS spheres and their hybrids with reduced graphene oxide: synthesis, microwave absorption, and lithium storage properties. ChemPlusChem. 2013;78:843-51.

[104]

Cheng Y, Cao J, Li Y, Li Z, Zhao H, Ji G. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption. ACS Sustainable Chem Eng 2018;6:1427-35.

[105]

Deng Y, Zhao L, Shen B, Liu L, Hu W. Microwave characterization of submicrometer-sized nickel hollow sphere composites. J Appl Phys 2006;100:14304.

[106]

Xu H, Yin X, Zhu M, Li M, Zhang H, Wei H. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019;142:346-53.

[107]

Luo J, Zhang K, Cheng M, Gu M, Sun X. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem Eng J 2020;380:122625.

[108]

Xu H, Yin X, Zhu M, Han M, Hou Z, Li X. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl Mater Interfaces 2017;9:6332-41.

[109]

Zhou C, Geng S, Xu X, Wang T, Zhang L, Tian X. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 2016;108:234-41.

[110]

Lv H, Ji G, Liu W, Zhang H, Du Y. Achieving hierarchical hollow carbon@Fe@ Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem 2015;C 3:10232-41.

[111]

Hou J, Zhang L, Qiu H, Duan W, Wang X, Wan X. Fabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheres. J Mater Sci Mater Electron 2017;28:9279-88.

[112]

Xu H, Yin X, Li Z, Liu C, Wang Z, Li M. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology 2018;29:184003.

[113]

Cheng Y, Zhao H, Zhao Y, Cao J, Zheng J, Ji G. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 2020;161:870-9.

[114]

Tao J, Zhou J, Yao Z, Jiao Z, Wei B, Tan R. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021;172:542-55.

[115]

Huan Y, Qi Q, Pan H, Lei X, Liu X. Facile preparation of octahedral Fe3O4/RGO composites and its microwave electromagnetic properties. J Mater Sci Mater Electron 2016;27:9577-83.

[116]

Zhang X, Wang H, Hu R, Huang C, Zhong W, Pan L. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl Surf Sci 2019;484:383-91.

[117]

Zhang DQ, Zhang HB, Cheng JY, Raza H, Liu TT, Liu B. Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J Mater Chem C 2020;8:5923-33.

[118]

Peng F, Meng F, Guo Y, Wang H, Huang F, Zhou Z. Intercalating hybrids of sandwich-like Fe3O4-graphite: synthesis and their synergistic enhancement of microwave absorption. ACS Sustainable Chem Eng 2018;6:16744-53.

[119]

Feng W, Luo H, Wang Y, Zeng S, Tan Y, Deng L. Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci Rep 2019;9:3957.

[120]

Feng W, Luo H, Wang Y, Zeng S, Deng L, Zhou X. Ti3C2 MXene: a promising microwave absorbing material. RSC Adv 2018;8:2398-403.

[121]

Kuang B, Song W, Ning M, Li J, Zhao Z, Guo D. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 2018;127:209-17.

[122]

Pastore R, Delfini A, Micheli D, Vricella A, Marchetti M, Santoni F. Carbon foam electromagnetic mm-wave absorption in reverberation chamber. Carbon 2019;144:63-71.

[123]

Liu P, Zhang Y, Yan J, Huang Y, Xia L, Guang Z. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J 2019;368:285-98.

[124]

Wang Z, Wei R, Gu J, Liu H, Liu C, Luo C. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 2018;139:1126-35.

[125]

Zhao H, Cheng Y, Lv H, Ji G, Du Y. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019;142:245-53.

[126]

Qiu X, Wang L, Zhu H, Guan Y, Zhang Q. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous Carbon. Nanoscale 2017;9:7408-18.

[127]

Zhang W, Zheng Y, Zhang X, Zhu Q, Yan H, Liotta LF, et al. Synthesis and mechanism investigation of wide-bandwidth Ni@MnO2 NS foam microwave absorbent. J Alloys Compd 2019;792:945-52.

[128]

Li Y, Li S, Zhang T, Shi L, Liu S, Zhao Y. 3D hierarchical Co3O4/Reduced graphene oxide/melamine derived carbon foam as a comprehensive microwave absorbing material. J Alloys Compd 2019;792:424-31.

[129]

Chen H, Huang Z, Huang Y, Zhang Y, Ge Z, Qin B. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 2017;124:506-14.

[130]

Yan J, Huang Y, Chen C, Liu X, Li H. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 2019;152:545-55.

[131]

Zhang Y, Huang Y, Chen H, Huang Z, Yang Y, Xiao P. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016;105:438-47.

[132]

Liu J, Zhang HB, Xie X, Yang R, Liu Z, Liu Y. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018;14:1802479.

[133]

Wang S, Xiao N, Zhou Y, Ling Z, Li M, Qiu J. Lightweight carbon foam from coal liquefaction residue with broad-band microwave absorbing capability. Carbon 2016;105:224-6.

[134]

Zhao B, Deng J, Zhao C, Wang C, Chen YG, Hamidinejad M, et al. Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J Mater Chem C 2020;8:58-70.

[135]

Zhou X, Jia Z, Feng A, Wang X, Liu J, Zhang M. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019;152:827-36.

[136]

Cheng Y, Tan M, Hu P, Zhang X, Sun B, Yan L. Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl Surf Sci 2018;448:138-44.

[137]

Fu J, Yang W, Hou L, Chen Z, Qiu T, Yang H. Enhanced electromagnetic microwave absorption performance of lightweight bowl-like carbon nanoparticles. Ind Eng Chem Res 2017;56:11460-6.

[138]

Pan YF, Wang GS, Liu L, Guo L, Yu SH. Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017;10:284-94.

[139]

Kumar SS, Jaleel AM, Kar KK. Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl Mater Interfaces 2018;10:24816-28.

[140]

Xu Z, Du Y, Liu D, Wang Y, Ma W, Wang Y. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl Mater Interfaces 2019;11:4268-77.

[141]

Cao WQ, Wang XX, Yuan J, Wang WZ, Cao MS. Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 2015;3:10017-22.

[142]

Ning MQ, Lu MM, Li JB, Chen Z, Dou YK, Wang CZ. Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015;7:15734-40.

[143]

Albuquerque GH, Fitzmorris RC, Ahmadi M, Wannenmacher N, Thallapally PK, McGrail BP. Gas–liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm 2015;17:5502-10.

[144]

Yang Y, Li M, Wu Y, Zong B, Ding J. Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv 2016;6:25444-8.

[145]

Wang L, Huang Y, Li C, Chen J, Sun X. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber. Phys Chem Chem Phys 2015;17:2228-34.

[146]

Wu Z, Tian K, Huang T, Hu W, Xie F, Wang J. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl Mater Interfaces 2018;10:11108-15.

[147]

Liu L, Wang L, Li Q, Yu X, Shi X, Ding J. High-performance microwave absorption of MOF-derived core-shell Co@N-doped carbon anchored on reduced graphene oxide. ChemNanoMat 2019;5:558-65.

[148]

Shu R, Li W, Wu Y, Zhang J, Zhang G. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem Eng J 2019;362:513-24.

[149]

Chen D, Wang GS, He S, Liu J, Guo L, Cao MS. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties. J Mater Chem A 2013;1:5996-6003.

[150]

Li X, Feng J, Du Y, Bai J, Fan H, Zhang H. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J Mater Chem A 2015;3. 5535–5346.

[151]

Chai JX, Cheng JY, Zhang DQ, Xiong YF, Yang XY, Ba XW. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J Alloys Compd 2020;829:154531.

[152]

Cao MS, Shu JC, Wang XX, Wang X, Zhang M, Yang HJ. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann Phys 2019;531:1800390.

[153]

Kong L, Yin X, Yuan X, Zhang Y, Liu X, Cheng L. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 2014;73:185-93.

[154]

Wu F, Xia Y, Sun M, Xie A. Two-dimensional (2D) few-layers WS2 nanosheets: an ideal nanomaterials with tunable electromagnetic absorption performance. Appl Phys Lett 2018;113:52906.

[155]

Liu P, Huang Y, Sun X. NiFe2O4 clusters on the surface of reduced graphene oxide and their excellent microwave absorption properties. Mater Lett 2013;112:117-20.

[156]

Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Materials 2014;26:5480-7.

[157]

Zong M, Huang Y, Wu H, Zhao Y, Wang S, Zhang N. Facile synthesis of RGO/Fe3O4/Ag composite with high microwave absorption capacity. Mater Lett 2013;111:188-91.

[158]

Su Q, Li J, Zhong G, Du G, Xu B. In situ synthesis of iron/nickel sulfide nanostructures-filled carbon nanotubes and their electromagnetic and microwave-absorbing properties. J Phys Chem C 2011;115:1838-42.

[159]

Zhang DQ, Xiong YF, Cheng JY, Chai JX, Liu TT, Ba XW. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci Bull 2020;65:138-46.

[160]

Kong L, Yin X, Zhang Y, Yuan X, Li Q, Ye F. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J Phys Chem C 2013;117:19701-11.

[161]

He JZ, Wang XX, Zhang YL, Cao MS. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J Mater Chem C 2016;4:7130-40.

[162]

Li M, Cao X, Zheng S, Qi S. Ternary composites RGO/MoS2@ Fe3O4: synthesis and enhanced electromagnetic wave absorbing performance. J Mater Sci Mater Electron 2017;28:16802-12.

[163]

Pan J, Sun X, Wang T, Zhu Z, He Y, Xia W. Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. Appl Surf Sci 2018;457:271-9.

[164]

Zhang W, Zhang X, Wu H, Yan H, Qi S. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J Alloys Compd 2018;751:34-42.

[165]

Zhang DQ, Chai JX, Cheng JY, Jia YX, Yang XY, Wang H. Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures. Appl. Surf. Scientia 2018;462:872-82.

[166]

Cheng Y, Zhao Y, Zhao H, Lv H, Qi X, Cao J. Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem Eng J 2019;372:390-8.

[167]

Berdiyorov GR. Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. EPL (Europhysics Letters) 2015;111:67002.

[168]

Li X, Yin X, Song C, Han M, Xu H, Duan W. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater 2018;28:1803938.

[169]

Xu H, Yin X, Li X, Li M, Liang S, Zhang L. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interfaces 2019;11:10198-207.

[170]

Li X, Yin X, Han M, Song C, Xu H, Hou Z. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 2017;5:4068-74.

[171]

Zhao G, Lv H, Zhou Y, Zheng X, Wu C, Xu C. Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl Mater Interfaces 2018;10:42925-32.

[172]

Li M, Han M, Zhou J, Deng Q, Zhou X, Xue J. Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater 2018;4:1700617.

[173]

Chen H, Hong R, Liu Q, Li S, Huang F, Lu Y. CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J Alloys Compd 2018;752:115-22.

[174]

Shang L, Yu H, Huang X, Bian Z, Shi R, Zhao Y. Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv Mater 2016;28:1668-74.

[175]

Yao MS, Tang WX, Wang GE, Nath B, Xu G. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv Mater 2016;28:5229-34.

[176]

Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H. Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos B Eng 2019;171:111-8.

[177]

Rehman S, Wang J, Luo Q, Sun M, Jiang L, Han Q. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem Eng J 2019;373:122-30.

[178]

Rehman S, Liu J, Fang Z, Wang J, Ahmed R, Wang C. Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwave-absorbing nanomaterials. ACS Appl. Nano Mater 2019;2:4451-61.

[179]

Qi K, Hou R, Zaman S, Qiu Y, Xia BY, Duan H. Construction of metal-organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl Mater Interfaces 2018;10:18021-8.

[180]

Wang TC, Hod I, Audu CO, Vermeulen NA, Nguyen ST, Farha OK. Rendering high surface area, mesoporous metal-organic frameworks electronically conductive. ACS Appl Mater Interfaces 2017;9:12584-91.

[181]

Jiang H, Liu XC, Wu Y, Shu Y, Gong X, Ke FS. Metal–organic frameworks for high charge–discharge rates in lithium–sulfur batteries. Angew. Chem. Int. 2018;57:3916-21.

[182]

Li J, Miao P, Chen KJ, Cao JW, Liang J, Tang Y. Highly effective electromagnetic wave absorbing Prismatic Co/C nanocomposites derived from cubic metal-organic framework. Compos B Eng 2020;182:107613.

[183]

Deng B, Xiang Z, Xiong J, Liu Z, Yu L, Lu W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett 2020;12:55.

[184]

Li Z, Han X, Ma Y, Liu D, Wang Y, Xu P. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem Eng 2018;6:8904-13.

[185]

Liu Y, Chen Z, Xie W, Qiu F, Zhang Y, Song S. Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J Alloys Compd 2019;809:151837.

[186]

Ouyang J, He Z, Zhang Y, Yang H, Zhao Q. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl Mater Interfaces 2019;11:39304-14.

[187]

Yin Y, Liu X, Wei X, Yu R, Shui J. Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces 2016;8:34686-98.

[188]

Ma J, Zhang X, Liu W, Ji G. Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption. J Mater Chem C 2016;4:11419-26.

[189]

Yin Y, Liu X, Wei X, Li Y, Nie X, Yu R. Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces 2017;9:30850-61.

[190]

Liang X, Quan B, Ji G, Liu W, Zhao H, Dai S. Tunable dielectric performance derived from the metal–organic framework/reduced graphene oxide hybrid with broadband Absorption. ACS Sustainable Chem Eng 2017;5:10570-9.

[191]

Yang Y, Li ML, Lin JN, Zou MY, Gu ST, Hong XJ. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor. Inorg Chem 2020;59:2406-12.

[192]

Liu W, Tan S, Yang Z, Ji G. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl Mater Interfaces 2018;10:31610-22.

[193]

Zhang K, Xie A, Sun M, Jiang W, Wu F, Dong W. Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater Chem Phys 2017;199:340-7.

[194]

Huang M, Wang L, Pei K, You W, Yu X, Wu Z. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020;16:2000158.

[195]

Zhang P, Han X, Kang L, Qiang R, Liu W, Du Y. Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv 2013;3:12694-701.

[196]

Cheng JY, Yang XY, Dong LB, Yuan ZH, Wang WB, Wu SL, Chen SM, Zheng GP, Zhang WJ, Zhang DQ, Wang H. Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis. Polym Test 2017;59:371-6.

[197]

Chen D, Miao YE, Liu T. Electrically conductive polyaniline/polyimide nanofiber membranes prepared via a combination of electrospinning and subsequent in situ polymerization growth. ACS Appl Mater Interfaces 2013;5:1206-12.

[198]

Wang L, Huang Y, Huang H. N-doped graphene@polyaniline nanorod arrays hierarchical structures: synthesis and enhanced electromagnetic absorption properties. Mater Lett 2014;124:89-92.

[199]

Xu C, Wu F, Duan L, Xiong Z, Xia Y, Yang Z. Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy. ACS Appl. Electron. Mater 2020;2:1505-13.

[200]

Ding J, Wang L, Zhao Y, Xing L, Yu X, Chen G. Boosted interfacial polarization from multishell TiO2@ Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019;15:1902885.

[201]

Shi Y, Yu L, Li K, Li S, Dong Y, Zhu Y, Fu Y, Meng F. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption. Compos Sci Technol 2020;197:108246.

[202]

Qu B, Zhu C, Li C, Zhang X, Chen Y. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces 2016;8:3730-5.

[203]

Wang Z, Wu L, Zhou J, Shen B, Jiang Z. Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell. RSC Adv 2013;3:3309-15.

[204]

Liu T, Pang Y, Zhu M, Kobayashi S. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 2014;6:2447-54.

[205]

Liu B, Cheng JY, Peng HQ, Chen D, Cui X, Shen D, Zhang K, Jiao TP, Li MF, Lee CS, Zhang WJ. In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J Mater Chem A 2019;7:775-82.

[206]

Liu B, Peng HQ, Cheng JY, Zhang K, Chen D, Shen D, Wu SL, Jiao TP, Kong X, Gao QL, Bu SY, Lee CS, Zhang WJ. Nitrogen-doped graphene-encapsulated nickel–copper alloy nanoflower for highly efficient electrochemical hydrogen evolution reaction. Small 2019;15:1901545.

[207]

He C, Qiu S, Wang X, Liu J, Luan L, Liu W. Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties. J Mater Chem 2012;22:22160-6.

[208]

Liu XG, Geng DY, Zhang ZD. Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules. Appl Phys Lett 2008;92:243110.

[209]

Wen F, Zhang F, Liu Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight Absorbers. J Phys Chem C 2011;115:14025-30.

[210]

Li Y, Zhang J, Liu Z, Liu M, Lin H, Che R. Morphology-dominant microwave absorption enhancement and electron tomography characterization of CoO self-assembly 3D nano-flowers. J Mater Chem C 2014;2:5216-22.

[211]

Shi FN, Hu Y, Wang X, Sun X, Lu M, Shi G. Decomposition of MOFs for the preparation of nanoporous Co3O4 fibres and sheets with excellent microwave absorption and photocatalytic properties. Dalton Trans 2017;46:1936-42.

[212]

Liu P, Ng VMH, Yao Z, Zhou J, Lei Y, Yang Z. Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl Mater Interfaces 2017;9:16404-16.

[213]

Tian Z, Dai J, Li J, Zhu G, Lu J, Xu C. Tailored fabrication of α-Fe2O3 nanocrystals/reduced graphene oxide nanocomposites with excellent electromagnetic absorption property. J Nanosci Nanotechnol 2016;16:12590-601.

[214]

Liu X, Guo H, Xie Q, Luo Q, Wang LS, Peng DL. Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. J. Alloys Compd. 2015:537-43.

[215]

Liu X, Wang LS, Ma Y, Zheng H, Lin L, Zhang Q. Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-band. ACS Appl Mater Interfaces 2017;9:7601-10.

[216]

Zhang H, Xie A, Wang C, Wang H, Shen Y, Tian X. Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J Mater Chem A 2013;1:8547-52.

[217]

Zong M, Huang Y, Zhang N, Wu H. Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J Alloys Compd 2015;644:491-501.

[218]

Wang T, Liu Z, Lu M, Wen B, Ouyang Q, Chen Y. Graphene-Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J Appl Phys 2013;113:24314.

[219]

Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Materials 2014;26:3333-7.

[220]

Cao MS, Yang J, Song WL, Zhang DQ, Wen B, Jin HB. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interfaces 2012;4. 6949–6456.

[221]

Zhou W, Hu X, Bai X, Zhou S, Sun C, Yan J. Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl Mater Interfaces 2011;3:3839-45.

[222]

Yuan H, Zhang X, Yan F, Zhang S, Zhu C, Li C. Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials. Carbon 2018;140:368-76.

[223]

Wang S, Peng S, Zhong S, Jiang W. Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@Air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J Mater Chem C 2018;6:9465-74.

[224]

Zhang DQ, Cheng JY, Chai JX, Deng JJ, Ren R, Su Y, Wang H, Ma CQ, Lee CS, Zhang WJ, Zheng GP, Cao MS. Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers. J Alloys Compd 2018;740:1067-76.

[225]

Acharya S, Alegaonkar P, Datar S. Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem Eng J 2019;374:144-54.

[226]

Zhang DQ, Yang XY, Cheng JY, Lu MM, Zhao B, Cao MS. Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites. J Nanomater 2013;2013:591893.

[227]

Wang Y, Wu X, Zhang W, Luo C, Li J, Wang Q. 3D heterostructure of graphene@ Fe3O4@WO3@PANI: preparation and excellent microwave absorption performance. Synth Met 2017;231:7-14.

[228]

Wang L, Huang Y, Li C, Chen J, Sun X. Hierarchical graphene@ Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance. Phys Chem Chem Phys 2015;17:5878-86.

[229]

Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 2016;28:486-90.

[230]

Ma J, Shu J, Cao W, Zhang M, Wang X, Yuan J. A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@rGO/SiO2 composites. Compos. BBC Eng 2019;166:187-95.

[231]

Yang N, Zeng J, Xue J, Zeng L, Zhao Y. Strong absorption and wide-frequency microwave absorption properties of the nanostructure zinc oxide/zinc/carbon fiber multilayer composites. J Alloys Compd 2018;735:2212-8.

[232]

Wang K, Wan G, Wang G, He Z, Shi S, Wu L. The construction of carbon-coated Fe3O4 yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption. J Colloid Interface Sci 2018;511:307-17.

[233]

Miao P, Cheng K, Li H, Gu J, Chen K, Wang S. Poly(dimethylsilylene)diacetylene-Guided ZIF-based heterostructures for full ku-band electromagnetic wave absorption. ACS Appl Mater Interfaces 2019;11:17706-13.

[234]

Xiang Z, Song Y, Xiong J, Pan Z, Wang X, Liu L. Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 2019;142:20-31.

[235]

Zhou C, Wu C, Liu D, Yan M. Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber. Chem Eur J 2019;25:2234-41.

[236]

Hou C, Li T, Zhao T, Cheng T, Zhang W, Li G. Microwave absorption and mechanical properties of La(NO3)3-doped multi-walled carbon nanotube/polyvinyl chloride composites. Mater Lett 2012;67:84-7.

[237]

Zhang C, Wang B, Xiang J, Su C, Mu C, Wen F. Microwave absorption properties of CoS2 nanocrystals embedded into reduced graphene oxide. ACS Appl Mater Interfaces 2017;9:28868-75.

[238]

Xu P, Han X, Jiang J, Wang X, Li X, Wen A. Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites. J Phys Chem C 2007;111:12603-8.

[239]

Cui C, Du Y, Li T, Zheng X, Wang X, Han X. Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J Phys Chem B 2012;116. 9523–9231.

[240]

Wang Q, Lei Z, Chen Y, Ouyang Q, Gao P, Qi L. Branched polyaniline/molybdenum oxide organic/inorganic heteronanostructures: synthesis and electromagnetic absorption properties. J Mater Chem A 2013;1:11795-801.

[241]

Sun Y, Xiao F, Liu X, Feng C, Jin C. Preparation and electromagnetic wave absorption properties of core–shell structured Fe3O4-polyaniline nanoparticles. RSC Adv 2013;3:22554-9.

[242]

Khani O, Shoushtari MZ, Jazirehpour M, Shams MH. Effect of carbon shell thickness on the microwave absorption of magnetite-carbon core-shell nanoparticles. Ceram Int 2016;42:14548-56.

[243]

Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y. Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 2011;115:13603-8.

[244]

Wang Z, Wu L, Zhou J, Jiang Z, Shen B. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption. Nanoscale 2014;6:12298.

[245]

Lv H, Ji G, Zhang H, Du Y. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance. RSC Adv 2015;5:76836-43.

[246]

Qiao M, Lei X, Ma Y, Tian L, Su K, Zhang Q. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem Eng J 2016;304:552-62.

[247]

Mo Z, Yang R, Lu D, Yang L, Hu Q, Li H. Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 2019;144:433-9.

[248]

Estevez D, Qin FX, Quan L, Luo Y, Zheng XF, Wang H. Complementary design of nano-carbon/magnetic microwire hybrid fibers for tunable microwave absorption. Carbon 2018;132:486-94.

[249]

Lin Y, Dai J, Yang H, Wang L, Wang F. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem Eng J 2018;334:1740-8.

[250]

Zou C, Yao Y, Wei N, Gong Y, Fu W, Wang M. Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites. Compos B Eng 2015;77:209-14.

[251]

Zhang B, Du Y, Zhang P, Zhao H, Kang L, Han X. Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J Appl Polym Sci 2013;130:1909-16.

[252]

Han M, Yin X, Kong L, Li M, Duan W, Zhang L. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A 2014;2:16403-9.

[253]

Wu H, Wu Q, Wang L. Design and wide range microwave absorption of porous Co-Co3O4 hybrid hollow sphere with magnetic multi-resonance mechanisms. Mater Char 2015;103:1-10.

[254]

Singh VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 2012;50:2202-8.

[255]

Huang X, Yan X, Xia L, Wang P, Wang Q, Zhang X. A three-dimensional graphene/Fe3O4/carbon microtube of sandwich-type architecture with improved wave absorbing performance. Scr. Materials 2016;120:107-11.

[256]

Fang J, Liu T, Chen Z, Wang Y, Wei W, Yue X. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 2016;8:8899-909.

[257]

Wang C, Ding Y, Yuan Y, He X, Wu S, Hu S. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J Mater Chem C 2015;3:11893-901.

[258]

Liu B, Li J, Wang L, Ren J, Xu Y. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties. Composer Part A Appl Sci Manuf 2017;97:141-50.

[259]

Lv H, Liang X, Ji G, Zhang H, Du Y. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Interfaces 2015;7:9776-83.

[260]

Xing L, Li X, Wu Z, Yu X, Liu J, Wang L. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem Eng J 2020;379:122241.

[261]

Wang H, Wu L, Jiao J, Zhou J, Xu Y, Zhang H. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J Mater Chem A 2015;3:6517-25.

[262]

Su Q, Zhong G, Li J, Du G, Xu B. Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties. Appl Phys A 2012;106:59-65.

[263]

Sun Y, Liu X, Feng C, Fan J, Lv Y, Wang Y. A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J Alloys Compd 2014;586:688-92.

[264]

Che RC, Zhi CY, Liang CY, Zhou XG. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl Phys Lett 2006;88:33105.

[265]

Zhou Y, Miao J, Shen Y, Xie A. Novel porous FexCyNz/N-doped CNT nanocomposites with excellent bifunctions for catalyzing oxygen reduction reaction and absorbing electromagnetic wave. Appl Surf Sci 2018;453:83-92.

[266]

Liu T, Xie X, Pang Y, Kobayashi S. Co/C nanoparticles with low graphitization degree: a high-performance microwave absorbing material. J Mater Chem C 2016;4:1727.

[267]

Liu X, Wu N, Cui C, Li Y, Zhou P, Bi N. Facile preparation of carbon-coated Mg nanocapsules as light microwave absorber. Mater Lett 2015;149:12.

[268]

Wang Y, Chen D, Yin X, Xu P, Wu F, He M. Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 2015;7:26226-34.

[269]

Liu Q, Zhang D, Fan T. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl Phys Lett 2008;93:13110.

[270]

Ding Y, Zhang Z, Luo B, Liao Q, Liu S, Liu Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 2017;10:980-90.

[271]

Liu P, Huang Y, Wang L, Zong M, Zhang W. Hydrothermal synthesis of reduced graphene oxide-Co3O4 composites and the excellent microwave electromagnetic properties. Mater Lett 2013;107:166-9.

[272]

Liu PB, Huang Y, Sun X. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl Mater Interfaces 2013;5:12355-60.

[273]

Xue J, Yin X, Pan H, Liu X, Zhang L, Cheng L. Crystallization mechanism of CVD Si3N4-SiCN composite ceramics annealed in N2 atmosphere and their excellent EMW absorption properties. J Am Ceram Soc 2016;99:2672-9.

[274]

Chen YH, Huang ZH, Lu MM, Cao WQ, Yuan J, Zhang DQ. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J Mater Chem A 2015;3:12621-5.

[275]

Sun H, Che R, You X, Jiang Y, Yang Z, Deng J. Cross-Stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Materials 2014;26:8120-5.

[276]

Zhao T, Ji X, Jin W, Wang C, Ma W, Gao J. Direct in situ synthesis of a 3D interlinked amorphous carbon nanotube/graphene/BaFe12O19 composite and its electromagnetic wave absorbing properties. RSC Adv 2017;7:15903-10.

[277]

Liu H, Li Y, Yuan M, Sun G, Li H, Ma S. In situ preparation of cobalt nanoparticles decorated in N-doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl Mater Interfaces 2018;10:22591-601.

[278]

Yang RB, Reddy PM, Chang CJ, Chen PA, Chen JK, Chang CC. Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content. Chem Eng J 2016;285:497-507.

[279]

Yang R, Wang B, Xiang J, Mu C, Zhang C, Wen F. Fabrication of NiCo2-anchored graphene nanosheets by liquid-phase exfoliation for excellent microwave absorbers. ACS Appl Mater Interfaces 2017;9:12673-9.

[280]

Wang L, Jia X, Li Y, Yang F, Zhang L, Liu L. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J Mater Chem A 2014;2:14940-6.

[281]

Liu S, Mei L, Liang X, Liao L, Lv G, Ma S. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics. ACS Appl Mater Interfaces 2018;10:29467-75.

[282]

Zhou N, An Q, Xiao Z, Zhai S, Shi Z. Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Adv 2017;7:45156-69.

[283]

Lin H, Zhu H, Guo H, Yu L. Microwave-absorbing properties of Co-filled carbon nanotubes. Mater Res Bull 2008;43:2697.

[284]

Liu X, Ran S, Yu J, Sun Y. Multiscale assembly of Fe2B porous microspheres for large magnetic losses in the gigahertz range. J Alloys Compd 2018;765:943-50.

[285]

Chen X, Meng F, Zhou Z, Tian X, Shan L, Zhu S. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 2014;6:8140-8.

[286]

Hu C, Mou Z, Lu G, Chen N, Dong Z, Hu M. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 2013;15:13038-43.

[287]

Bai X, Zhai Y, Zhang Y. Green approach to prepare graphene-based composites with high microwave absorption capacity. J Phys Chem C 2011;115:11673-7.

[288]

Liu P, Huang Y. Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties. RSC Adv 2013;3:19033-9.

[289]

Zong M, Huang Y, Wu H, Zhao Y, Wang Q, Sun X. One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater Lett 2014;114:52-5.

[290]

Liu Z, Bai G, Huang Y, Li F, Ma Y, Guo T. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J Phys Chem C 2007;111:13696-700.

[291]

Deng L, Han M. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl Phys Lett 2007;91:23119.

[292]

Jian X, Wu B, Wei Y, Dou S, Wang X, He W. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl Mater Interfaces 2016;8:6101.

[293]

Cui L, Liu Y, Wu X, Hu Z, Shi Z, Li H. Fe3O4-decorated single-walled carbon nanohorns with extraordinary microwave absorption property. RSC Adv 2015;5:75817-22.

[294]

Zong M, Huang Y, Zhao Y, Sun X, Qu C, Luo D. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites. RSC Adv 2013;3:23638-48.

[295]

Zhang X, Ji G, Liu W, Quan B, Liang X, Shang C. Thermal conversion of an Fe3O4@metal–organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015;7:12932-42.

[296]

Du L, Du Y, Li Y, Wang J, Wang C, Wang X. Surfactant-assisted solvothermal synthesis of Ba(CoTi)xFe12-2xO19 nanoparticles and enhancement in microwave absorption properties of polyaniline. J Phys Chem C 2010;114:19600-6.

[297]

Chen K, Xiang C, Li L, Qian H, Xiao Q, Xu F. A novel ternary composite: fabrication, performance and application of expanded graphite/polyaniline/CoFe2O4 ferrite. J Mater Chem 2012;22:6449-55.

[298]

Yu H, Wang T, Wen B, Lu M, Xu Z, Zhu C. Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 2012;22:21679-85.

[299]

Ting TH, Yu RP, Nau JY. Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2-40GHz. Mater Chem Phys 2011;126:364-8.

[300]

He Z, Fang Y, Wang X, Pang H. Microwave absorption properties of PANI/CIP/Fe3O4 composites. Synth Met 2011;161:420-5.

[301]

Yang CC, Gung YJ, Hung WC, Ting TH, Wu KH. Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites. Compos Sci Technol 2010;70:466-71.

[302]

Hu JY, Duan YP, Zhang J, Jing H, Liu SH, Li WP. γ-MnO2/polyaniline composites: preparation, characterization, and applications in microwave absorption. Physica B Condens. Matter 2011;406:1950-5.

[303]

Wang L, Zhu J, Yang H, Wang F, Qin Y, Zhao T. Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance. J Alloys Compd 2015;634:232-8.

[304]

Liu XG, Wing OS, Leung CM, Ho SL. Core/shell/shell-structured nickel/carbon/polyaniline nanocapsules with large absorbing bandwidth and absorber thickness range. J Appl Phys 2014;115:17A507.

[305]

Fan Z, Luo G, Zhang Z, Zhou L, Wei F. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B 2006;132:85-9.

[306]

Sun X, He J, Li G, Tang J, Wang T, Guo Y. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 2013;1:765-77.

Journal of Materiomics
Pages 1233-1263
Cite this article:
Cheng J, Zhang H, Xiong Y, et al. Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review. Journal of Materiomics, 2021, 7(6): 1233-1263. https://doi.org/10.1016/j.jmat.2021.02.017

196

Views

113

Crossref

150

Web of Science

159

Scopus

Altmetrics

Received: 02 February 2021
Revised: 17 February 2021
Accepted: 24 February 2021
Published: 08 March 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return