Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The application of piezoelectric ceramics at high temperature is limited because they can't have both high piezoelectric coefficient and high Curie temperature. While, BiScO3–PbTiO3-based piezoelectric ceramics possessing high Curie temperature and piezoelectric properties simultaneously have drawn increasing attention due to their potential applications at high temperature. Here, we reported a novel compositional design of (1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3 (abbreviated as BS-PT-xBSN). BS-PT-xBSN ceramic samples were synthesized by conventional solid state reaction method. According to the ternary phase diagram of BS-PT-xBSN ceramics brought up in this work, the morphotropic phase boundaries (MPB) were confirmed, which is located in the vicinity of x = 0.02. It canbe identified that the x = 0.02 sample near MPB has the optimal electric performance which are giant piezoelectric coefficient (d33 ~ 450 pC/N, higher 18 % than undoped samples) and high Curie temperature (Tc ~ 368 ℃) as well as large remant polarization (Pr ~ 46.6 μC/cm2). In addition, the variation of Pr is 3 % in the temperature range of 30–180 ℃ and the depolarization temperature of x = 0.02 ceramics is about 280 ℃. Structural analysis such as in-situ PFM and TEM confirms that giant piezoelectricity and depolarization temperature are attributed to the appearance of nano-domain and complexity of domains as well as the stable domain configuration. This work not only reveal the high potential of BS-PT-xBSN for high-temperature piezoelectric applications but also open up a feasible approach to design new high-temperature piezoelectric ceramics.
Manjón-Sanz AM, Dolgos MR. Chem Mater 2018;30: 8718-26.
Yan YK, Zhou JE, Maurya D, Wang YU, Priya S. Nat Commun 2016;7: 13089.
Tressler JF, Alkoy S, Newnham RE. J Electroceram 2004;2: 257-72.
Turner RC, Fuierer PA, Newnham RE, Shrout TR. Appl Acoust 1994;41: 299-324.
Eitel RE, Randall CA, Shaout TR, Rehrig PW, Hackenberger W, Park SE. Jpn J Appl Phys 2001;40: 5999-6002.
Eitel E, Shrout TR. C. A. Randall. 2004;43: 8146-50.
Chen JG, Hu ZQ, Shi HD, Li MY, Dong SX. J Phys D: Appl Phys 2012;45: 465303.
Liu Z, Zhao CL, Li JF, Wang K, Wu JG. J Mater Chem C 2018;6: 456-63.
Zhao HY, Hou YD, Yu XL, Zheng MP, Zhu MK. Acta Mater 2019;181: 238-48.
Zhao TL, Bokov AA, Wu JG, Wang HL, Wang CM, Yu Y, Wang CL, Zeng KY, Ye ZG, Dong SX. Adv Funct Mater 2019;29: 201807920.
Golubko NV, Kaleva GM, Mosunov AV, Politova ED, Sadovskaya NV, Stefanovich S Yu, Segalla AH. Ferroelectrics 2015;485: 95-100.
Qaiser MA, Ma XZ, Ma RT, Ali WJ, Xu XJ, Yuan GL, Chen L. J Am Ceram Soc 2019;102: 5424-31.
Guan SB, Yang HB, Zhao YZ, Zhang R. J Alloys Compd 2018;735: 386-93.
Yue Y, Zhang Q, Nie R, Yu P, Chen Q, Liu H, Zhu JG, Xiao DQ, Song HJ. Mater Res Bull 2017;92: 123-8.
Shi CY, Ma J, Wu J, Chen K, Wu B. J Mater Sci Mater Electron 2020;31: 2809-16.
Westphal V, Kleemann W, Glinchuk MD. Phys Rev Lett 1992;68: 847-50.
Li F, Zhou MX, Zhai JW, Shen B, Zeng HR. J Eur Ceram Soc 2018;38: 4646-52.
Yao ZH, Liu HX, Hao H, Cao MH. J Appl Phys 2011;109: 014105.
Uchino K. Sci Technol 2010: 111-29.
Shinekumar K, Dutta S. High-temperature piezoelectrics with large piezoelectric coefficients. J Electron Mater 2015;44: 613-22.
Li F, Lin DB, Chen ZB, Cheng ZX, Wang JL, Li CC, Xu Z, Huang QW, Liao XZ, Chen LQ, Shrout TR, Zhang SJ. Nat Mater 2018;17: 349-54.
Yashima M, Omoto K, Chen J, Kato H, Xing XR. Chem Mater 2011;23: 3135-7.
Levin L, Krayzman V, Woicik JC. Appl Phys Lett 2013;102: 162906.
Pang DF, Long XF, Tailor H. Ceram Int 2014;40: 12953-9.
Chaigneau J, Kiat JM, Malibert C, Bogicevic C. Phys Rev B 2007;76: 094111.
Rao KR, Murthy KSR, Ramesh MNV, Chaitanya Varma M. J. Appl. Sci. Comput. 2018;5: 501-8.
Jia JH, Shina DJ, Kima J, Koh JH. Ceram Int 2020;46: 4104-12.
Chen S, Dong XL, Yang H, Liang RH, Mao CL. J Am Ceram Soc 2007;90: 477-82.
Liu Z, Zhao CL, Li JF, Wang K, Wu JG. J Mater Chem C 2018;6: 456-63.
Wang FF, Fan LL, Ren Y, Chen J, Xing XR. Appl Phys Lett 2014;104: 252901.
Cross LE. Ferroelectrics 1994;151: 305-20.
Ye ZG. Key Eng Mater 1998;(155-156): 81-122.
Jiang YH, Zhao Y, Qin BQ, Jiang YZ, Shi W, Li LH, Xiao DQ, Zhu JG. Appl Phys Lett 2008;93: 022904.
Hu QR, Yang Y, Wang YP, Wu L, Yin J, Zhu H. Ceram Int 2018;44: 6817-22.
Huang CC, Cai K, Wang YC, Bai Y, Guo D. J Mater Chem C 2018;6: 1433-44.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).