The piezoelectric performance serves as the basis for the applications of piezoelectric ceramics. The ability to rapidly and accurately predict the piezoelectric coefficient (d33) is of much practical importance for exploring high-performance piezoelectric ceramics. In this work, a data-driven approach combining feature engineering, statistical learning, machine learning (ML), experimental design, and synthesis is trialed to investigate its accuracy in predicting d33 of potassium–sodium–niobate ((K,Na)NbO3, KNN)-based ceramics. The atomic radius (AR), valence electron distance (DV) (Schubert), Martynov–Batsanov electronegativity (EN-MB), and absolute electronegativity (EN) are summarized as the four most representative features in describing d33 out of all 27 possible features for the piezoelectric ceramics. These four features contribute greatly to regression learning for predicting d33 and classification learning for distinguishing polymorphic phase boundary (PPB). The ML method developed in this work exhibits a high accuracy in predicting d33 of the piezoelectric ceramics. An example of KNN combined with 6 mol% LiNbO3 demonstrates d33 of 184 pC/N, which is highly consistent with the predicted result. This work proposes a novel feature-oriented guideline for accelerating the design of piezoelectric ceramic systems with large d33, which is expected to be widely used in other functional materials.
- Article type
- Year
- Co-author
The application of piezoelectric ceramics at high temperature is limited because they can't have both high piezoelectric coefficient and high Curie temperature. While, BiScO3–PbTiO3-based piezoelectric ceramics possessing high Curie temperature and piezoelectric properties simultaneously have drawn increasing attention due to their potential applications at high temperature. Here, we reported a novel compositional design of (1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3 (abbreviated as BS-PT-xBSN). BS-PT-xBSN ceramic samples were synthesized by conventional solid state reaction method. According to the ternary phase diagram of BS-PT-xBSN ceramics brought up in this work, the morphotropic phase boundaries (MPB) were confirmed, which is located in the vicinity of x = 0.02. It canbe identified that the x = 0.02 sample near MPB has the optimal electric performance which are giant piezoelectric coefficient (d33 ~ 450 pC/N, higher 18 % than undoped samples) and high Curie temperature (Tc ~ 368 ℃) as well as large remant polarization (Pr ~ 46.6 μC/cm2). In addition, the variation of Pr is 3 % in the temperature range of 30–180 ℃ and the depolarization temperature of x = 0.02 ceramics is about 280 ℃. Structural analysis such as in-situ PFM and TEM confirms that giant piezoelectricity and depolarization temperature are attributed to the appearance of nano-domain and complexity of domains as well as the stable domain configuration. This work not only reveal the high potential of BS-PT-xBSN for high-temperature piezoelectric applications but also open up a feasible approach to design new high-temperature piezoelectric ceramics.
Bismuth titanate (Bi4Ti3O12, BIT) piezoelectric materials have attracted increasing attention due to their high-temperature applications. However, it is quite challenging to simultaneously achieve outstanding piezoelectric properties and high Curie temperature in BIT-based systems. In this study, oxygen vacancy defects tailoring strategy was utilized to solve this problem, excellent piezoelectric coefficient (32.1 pC/N), and ultrahigh Curie temperature (659 ℃) are gotten in Bi4Ti3-x(Mn1/3Nb2/3)xO12 (BTMN) ceramics, which are among the top values in the BIT-based ceramics. More importantly, the (Mn1/3Nb2/3)(4+δ)+ complex-ion modified Bi4Ti3O12-based ceramics are characterized with excellent piezoelectric stability up to 500 ℃ (d33 > 30.0 pC/N at 500 ℃)) and significantly reduced conductivity (only ~ 10−7 Ω−1 cm−1 at 500 ℃). Moreover, enhanced ferroelectricity and good dielectric stability were also obtained. The better comprehensive properties can be ascribed to two aspects. First, the concentration of oxygen vacancy defects is obviously reduced, and their distribution is effectively controlled in BITMN ceramics. Second, the introduction of (Mn1/3Nb2/3)(4+δ)+ complex-ion gives rise to the antiphase boundaries and massive ferroelectric domain walls. This works not only reveal the high potential of BITMN ceramics for high-temperature piezoelectric applications but also deepen the understanding of the structure-properties relationship in BIT-based materials.