Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Boosting the piezoelectric property of relaxor ferroelectric single crystal via active manipulation of defect dipole polarization

Qingyuan Hua,1()Huimin Liaoa,1Xin LiuaLi JinaKexin SongaYongyong ZhuangaZhuo XuaVladimir Ya ShurbXiaoyong Weia()
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Imformation, Xi'an Jiaotong University, Xi'an, 710049, China
School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia

1 Contributions: Qingyuan Hu and Huimin. Liao contributed equally to this work.]]>

Show Author Information

Abstract

To further enhance the property of piezoelectric materials is of great significance to improve the overall performance of electro-mechanical devices. Here in this work, we propose a thermal annealing and high temperature poling approach to achieve significantly enhanced piezoelectricity in Pb(In1/2Nb1/2)O3—Pb(Mg1/3Nb2/3)O3—PbTiO3 (PIN-PMN-PT) crystals with a morphotropic phase boundary (MPB) composition. The main idea of our approach is to realize a more sufficiently polarized crystal via active manipulation of defects and orientation of defect polarization. Manipulation of defect dipoles by the high temperature poling is proved by the piezo-response force microscopy. Finally, a d33 of 3300 pC/N and a SE of 0.25% are obtained, nearly 60% higher than that of conventionally poled crystals. Moreover, such a boosting of piezoelectric property is obtained under a maintained Curie temperature. Our research not only reveals the active control of defect dipole via modified poling method in the PIN-PMN-PT crystal, but also provides a feasible strategy to further improve the property of piezoelectric materials.

References

[1]

Eremkin VV, Smotrakov VG, Aleshin VA, Tsikhotskii ES. Inorg Mater 2004;40:775-9. https://doi.org/10.1023/B:INMA.0000034780.41158.5c.

[2]

Ivanov PV, Eremkin VV, Smotrakov VG, Tsikhotskii ES. Inorg Mater 2002;38:408-10. https://doi.org/10.1023/A:1015126526803.

[3]

El-Kady I, Olsson Ⅲ RH, Fleming JG. Appl Phys Lett 2008;92:233504. https://doi.org/10.1063/1.2938863.

[4]

Caperan T, Hyslop J, Hayward G. Ultrason Symposium IEEE 1995;2:1073-6. https://doi.org/10.1109/ULTSYM.1995.495747.

[5]

Park SE, Shrout TR. J Appl Phys 1997;82:1804-11. https://doi.org/10.1063/1.365983.

[6]

Zhang SJ, Li F. J Appl Phys 2012;111:2-27. https://doi.org/10.1063/1.3679521.

[7]

Damjanovic D. IEEE Trans Ultrason Ferroelectrics Freq Control 2009;56:1574-85. https://doi.org/10.1109/TUFFC.2009.1222.

[8]

Fu HX, Cohen RE. Nature 2000;403:281-3. https://doi.org/10.1038/35002022.

[9]

Wu JG, Xiao DQ, Zhu JG. Chem Rev 2015;115:2559-95. https://doi.org/10.1021/cr5006809.

[10]

Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G. Phys Rev Lett 2000;84:5423-6. https://doi.org/10.1103/PhysRevLett.84.5423.

[11]

Zhang R, Jiang B, Cao WW. J Appl Phys 2001;90:3471-5. https://doi.org/10.1063/1.1390494.

[12]
Lines ME, Glass AM. Oxford Univ Press; 1977. https://doi.org/10.1063/1.2995188.
[13]

Li F, Lin DB, Chen ZB, Cheng ZX, Wang JL, Li CC, et al. Nat Mater 2018;17:349-54. https://doi.org/10.1038/s41563-018-0034-4.

[14]

Wang B, Li F, Chen LQ. Adv Mater 2021;33:2105071. https://doi.org/10.1002/adma.202105071.

[15]

Viehland D, Li JF, Colla EV. J Appl Phys 2004;96:3379-81. https://doi.org/10.1063/1.1779971.

[16]

Ahluwalia R, Lookman T, Saxena A, Cao W-W. Phys Rev B 2005;72:014112. https://doi.org/10.1103/PhysRevB.72.014112.

[17]

Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T. J Appl Phys 2005;98:014109. https://doi.org/10.1063/1.1957130.

[18]

Feng ZY, Zhao XY, Luo HS. Mater Res Bull 2006;41:1133-7. https://doi.org/10.1016/j.materresbull.2005.11.007.

[19]

Wu JG, Xiao DQ, Wu WJ, Chen Q, Zhu JG, Yang ZC, et al. J Eur Ceram Soc 2012;32:891-8. https://doi.org/10.1016/j.jeurceramsoc.2011.11.003.

[20]

Li B-Z, Blendell JE, Bowman KJ. J Eur Ceram Soc 2011;94:3192-4. https://doi.org/10.1111/j.1551-2916.2011.04758.x.

[21]

Kounga AB, Granzow T, Aulbach E, Hinterstein M, Roedel J. J Appl Phys 2008;104:024116. https://doi.org/10.1063/1.2959830.

[22]

Xiang Y, Zhang R, Cao WW. Appl Phys Lett 2010;96:092902. https://doi.org/10.1063/1.3314285.

[23]

Marton P, Rychetsky I, Hlinka J. Phys Rev B 2010;81:144125. https://doi.org/10.1103/PhysRevB.81.144125.

[24]

Qiu CR, Wang B, Zhang N, Zhang SJ, Liu JF, Walker D, et al. Nature 2020;577:350-4. https://doi.org/10.1038/s41586-019-1891-y.

[25]

Jesse S, Rodriguez BJ, Choudhury S, Baddorf AP, Vrejoiu I, Hesse D, Alexe M, Eliseev EA, Morozovska AN, Zhang J-X, Chen L-Q, Kalinin SV. Nat Mater 2008;7:209-15. https://doi.org/10.1038/nmat2114.

[26]

Rojac T, Drnovsek S, Bencan A, Malic B, Damjanovic D. Phys Rev B 2016;93:014102. https://doi.org/10.1103/PhysRevB.93.014102.

[27]

Kitanaka Y, Noguchi Y, Miyayama M. Phys Rev B 2010;81:094114. https://doi.org/10.1103/PhysRevB.81.094114.

[28]

Chandrasekaran A, Wei XK, Feigl L, Damjanovic D, Setter N, Marzari N. Phys Rev B 2016;93:144102. https://doi.org/10.1103/PhysRevB.93.144102.

[29]

Cong R, Qiu GB, Yue CS, Guo M, Cheng FQ, Zhang M. Ceram Int 2018;44:19764-70. https://doi.org/10.1016/j.ceramint.2018.07.232.

[30]

Fang MX, Rajput S, Dai ZH, Ji YC, Hao YS, Ren XB. Acta Mater 2019;169:155-61. https://doi.org/10.1016/j.actamat.2019.03.011.

[31]

Bencan A, Drazic G, Ursic H, Makarovic M, Komelj M, Rojac T. Nat Commun 2020;11:1762. https://doi.org/10.1038/s41467-020-15595-0.

[32]

Fan HQ, Park GT, Choi JJ. Appl Phys Lett 2001;79:1658-60. https://doi.org/10.1063/1.1402653.

[33]

Lee D, Jeon BC, Baek SH, Yang SM, Shin YJ, Kim TH, et al. Adv Mater 2012;24:6490-5. https://doi.org/10.1002/adma.201203101.

[34]

Liu HR, Veber P, Rodel J, Rytz D, Fabritchnyi PB, Afanasov MI, et al. Acta Mater 2018;148:499-507. https://doi.org/10.1016/j.actamat.2018.02.026.

[35]

Gao P, Nelson CT, Jokisaari JR, Baek SH, Bark CW, Zhang Y, et al. Nat Commun 2011;2:591. https://doi.org/10.1038/ncomms1600.

[36]

Jakes P, Erdem E, Eichel RA, Jin L, Damjanovic D. Appl Phys Lett 2011;98:072907. https://doi.org/10.1063/1.3555465.

[37]

Sun EW, Cao WW. Prog Mater Sci 2014;65:124-210. https://doi.org/10.1016/j.pmatsci.2014.03.006.

[38]

Wang YJ, Wang ZG, Ge WW, Luo CT, Li JF, Viehland D, et al. Phys Rev B 2014;90:134107. https://doi.org/10.1103/PhysRevB.90.134107.

[39]

Chen JW, Li XB, Zhao XY, Wang XA, Chen C, Deng H, et al. J Mater Sci Mater Electron 2015;26:9316-28. https://doi.org/10.1007/s10854-015-3023-2.

[40]

Li ZR, Song KX, Guo HS, Liu YB, Ma M, Fan SJ, et al. J Cryst Growth 2017;468:331-4. https://doi.org/10.1016/j.jcrysgro.2016.10.053.

[41]

Xia ZG, Li Q, Cheng M. Cryst Res Technol 2007;42:511-6. https://doi.org/10.1002/crat.200610857.

[42]

Novosselov A, Pajaczkowska A, Talik E. Cryst Res Technol 2001;36:859-64. https://doi.org/10.1002/1521-4079(200110)36:8/10<859::AIDCRAT859>3.0.CO;2-S.

[43]

Li F, Cabral MJ, Xu B, Cheng ZX, Dickey EC, LeBeau JM, et al. Science 2019;364:264-8. https://doi.org/10.1126/science.aaw2781.

[44]

Li F, Lin DB, Chen ZB, Cheng ZX, Wang JL, Li CC, et al. Nat Mater 2018;17:349-54. https://doi.org/10.1038/s41563-018-0034-4.

Journal of Materiomics
Pages 166-173
Cite this article:
Hu Q, Liao H, Liu X, et al. Boosting the piezoelectric property of relaxor ferroelectric single crystal via active manipulation of defect dipole polarization. Journal of Materiomics, 2023, 9(1): 166-173. https://doi.org/10.1016/j.jmat.2022.08.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return