AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Boosting the piezoelectric property of relaxor ferroelectric single crystal via active manipulation of defect dipole polarization

Qingyuan Hua,1( )Huimin Liaoa,1Xin LiuaLi JinaKexin SongaYongyong ZhuangaZhuo XuaVladimir Ya ShurbXiaoyong Weia( )
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Imformation, Xi'an Jiaotong University, Xi'an, 710049, China
School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia

1 Contributions: Qingyuan Hu and Huimin. Liao contributed equally to this work.]]>

Show Author Information

Abstract

To further enhance the property of piezoelectric materials is of great significance to improve the overall performance of electro-mechanical devices. Here in this work, we propose a thermal annealing and high temperature poling approach to achieve significantly enhanced piezoelectricity in Pb(In1/2Nb1/2)O3—Pb(Mg1/3Nb2/3)O3—PbTiO3 (PIN-PMN-PT) crystals with a morphotropic phase boundary (MPB) composition. The main idea of our approach is to realize a more sufficiently polarized crystal via active manipulation of defects and orientation of defect polarization. Manipulation of defect dipoles by the high temperature poling is proved by the piezo-response force microscopy. Finally, a d33 of 3300 pC/N and a SE of 0.25% are obtained, nearly 60% higher than that of conventionally poled crystals. Moreover, such a boosting of piezoelectric property is obtained under a maintained Curie temperature. Our research not only reveals the active control of defect dipole via modified poling method in the PIN-PMN-PT crystal, but also provides a feasible strategy to further improve the property of piezoelectric materials.

References

[1]

Eremkin VV, Smotrakov VG, Aleshin VA, Tsikhotskii ES. Inorg Mater 2004;40:775-9. https://doi.org/10.1023/B:INMA.0000034780.41158.5c.

[2]

Ivanov PV, Eremkin VV, Smotrakov VG, Tsikhotskii ES. Inorg Mater 2002;38:408-10. https://doi.org/10.1023/A:1015126526803.

[3]

El-Kady I, Olsson Ⅲ RH, Fleming JG. Appl Phys Lett 2008;92:233504. https://doi.org/10.1063/1.2938863.

[4]

Caperan T, Hyslop J, Hayward G. Ultrason Symposium IEEE 1995;2:1073-6. https://doi.org/10.1109/ULTSYM.1995.495747.

[5]

Park SE, Shrout TR. J Appl Phys 1997;82:1804-11. https://doi.org/10.1063/1.365983.

[6]

Zhang SJ, Li F. J Appl Phys 2012;111:2-27. https://doi.org/10.1063/1.3679521.

[7]

Damjanovic D. IEEE Trans Ultrason Ferroelectrics Freq Control 2009;56:1574-85. https://doi.org/10.1109/TUFFC.2009.1222.

[8]

Fu HX, Cohen RE. Nature 2000;403:281-3. https://doi.org/10.1038/35002022.

[9]

Wu JG, Xiao DQ, Zhu JG. Chem Rev 2015;115:2559-95. https://doi.org/10.1021/cr5006809.

[10]

Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G. Phys Rev Lett 2000;84:5423-6. https://doi.org/10.1103/PhysRevLett.84.5423.

[11]

Zhang R, Jiang B, Cao WW. J Appl Phys 2001;90:3471-5. https://doi.org/10.1063/1.1390494.

[12]
Lines ME, Glass AM. Oxford Univ Press; 1977. https://doi.org/10.1063/1.2995188.
[13]

Li F, Lin DB, Chen ZB, Cheng ZX, Wang JL, Li CC, et al. Nat Mater 2018;17:349-54. https://doi.org/10.1038/s41563-018-0034-4.

[14]

Wang B, Li F, Chen LQ. Adv Mater 2021;33:2105071. https://doi.org/10.1002/adma.202105071.

[15]

Viehland D, Li JF, Colla EV. J Appl Phys 2004;96:3379-81. https://doi.org/10.1063/1.1779971.

[16]

Ahluwalia R, Lookman T, Saxena A, Cao W-W. Phys Rev B 2005;72:014112. https://doi.org/10.1103/PhysRevB.72.014112.

[17]

Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T. J Appl Phys 2005;98:014109. https://doi.org/10.1063/1.1957130.

[18]

Feng ZY, Zhao XY, Luo HS. Mater Res Bull 2006;41:1133-7. https://doi.org/10.1016/j.materresbull.2005.11.007.

[19]

Wu JG, Xiao DQ, Wu WJ, Chen Q, Zhu JG, Yang ZC, et al. J Eur Ceram Soc 2012;32:891-8. https://doi.org/10.1016/j.jeurceramsoc.2011.11.003.

[20]

Li B-Z, Blendell JE, Bowman KJ. J Eur Ceram Soc 2011;94:3192-4. https://doi.org/10.1111/j.1551-2916.2011.04758.x.

[21]

Kounga AB, Granzow T, Aulbach E, Hinterstein M, Roedel J. J Appl Phys 2008;104:024116. https://doi.org/10.1063/1.2959830.

[22]

Xiang Y, Zhang R, Cao WW. Appl Phys Lett 2010;96:092902. https://doi.org/10.1063/1.3314285.

[23]

Marton P, Rychetsky I, Hlinka J. Phys Rev B 2010;81:144125. https://doi.org/10.1103/PhysRevB.81.144125.

[24]

Qiu CR, Wang B, Zhang N, Zhang SJ, Liu JF, Walker D, et al. Nature 2020;577:350-4. https://doi.org/10.1038/s41586-019-1891-y.

[25]

Jesse S, Rodriguez BJ, Choudhury S, Baddorf AP, Vrejoiu I, Hesse D, Alexe M, Eliseev EA, Morozovska AN, Zhang J-X, Chen L-Q, Kalinin SV. Nat Mater 2008;7:209-15. https://doi.org/10.1038/nmat2114.

[26]

Rojac T, Drnovsek S, Bencan A, Malic B, Damjanovic D. Phys Rev B 2016;93:014102. https://doi.org/10.1103/PhysRevB.93.014102.

[27]

Kitanaka Y, Noguchi Y, Miyayama M. Phys Rev B 2010;81:094114. https://doi.org/10.1103/PhysRevB.81.094114.

[28]

Chandrasekaran A, Wei XK, Feigl L, Damjanovic D, Setter N, Marzari N. Phys Rev B 2016;93:144102. https://doi.org/10.1103/PhysRevB.93.144102.

[29]

Cong R, Qiu GB, Yue CS, Guo M, Cheng FQ, Zhang M. Ceram Int 2018;44:19764-70. https://doi.org/10.1016/j.ceramint.2018.07.232.

[30]

Fang MX, Rajput S, Dai ZH, Ji YC, Hao YS, Ren XB. Acta Mater 2019;169:155-61. https://doi.org/10.1016/j.actamat.2019.03.011.

[31]

Bencan A, Drazic G, Ursic H, Makarovic M, Komelj M, Rojac T. Nat Commun 2020;11:1762. https://doi.org/10.1038/s41467-020-15595-0.

[32]

Fan HQ, Park GT, Choi JJ. Appl Phys Lett 2001;79:1658-60. https://doi.org/10.1063/1.1402653.

[33]

Lee D, Jeon BC, Baek SH, Yang SM, Shin YJ, Kim TH, et al. Adv Mater 2012;24:6490-5. https://doi.org/10.1002/adma.201203101.

[34]

Liu HR, Veber P, Rodel J, Rytz D, Fabritchnyi PB, Afanasov MI, et al. Acta Mater 2018;148:499-507. https://doi.org/10.1016/j.actamat.2018.02.026.

[35]

Gao P, Nelson CT, Jokisaari JR, Baek SH, Bark CW, Zhang Y, et al. Nat Commun 2011;2:591. https://doi.org/10.1038/ncomms1600.

[36]

Jakes P, Erdem E, Eichel RA, Jin L, Damjanovic D. Appl Phys Lett 2011;98:072907. https://doi.org/10.1063/1.3555465.

[37]

Sun EW, Cao WW. Prog Mater Sci 2014;65:124-210. https://doi.org/10.1016/j.pmatsci.2014.03.006.

[38]

Wang YJ, Wang ZG, Ge WW, Luo CT, Li JF, Viehland D, et al. Phys Rev B 2014;90:134107. https://doi.org/10.1103/PhysRevB.90.134107.

[39]

Chen JW, Li XB, Zhao XY, Wang XA, Chen C, Deng H, et al. J Mater Sci Mater Electron 2015;26:9316-28. https://doi.org/10.1007/s10854-015-3023-2.

[40]

Li ZR, Song KX, Guo HS, Liu YB, Ma M, Fan SJ, et al. J Cryst Growth 2017;468:331-4. https://doi.org/10.1016/j.jcrysgro.2016.10.053.

[41]

Xia ZG, Li Q, Cheng M. Cryst Res Technol 2007;42:511-6. https://doi.org/10.1002/crat.200610857.

[42]

Novosselov A, Pajaczkowska A, Talik E. Cryst Res Technol 2001;36:859-64. https://doi.org/10.1002/1521-4079(200110)36:8/10<859::AIDCRAT859>3.0.CO;2-S.

[43]

Li F, Cabral MJ, Xu B, Cheng ZX, Dickey EC, LeBeau JM, et al. Science 2019;364:264-8. https://doi.org/10.1126/science.aaw2781.

[44]

Li F, Lin DB, Chen ZB, Cheng ZX, Wang JL, Li CC, et al. Nat Mater 2018;17:349-54. https://doi.org/10.1038/s41563-018-0034-4.

Journal of Materiomics
Pages 166-173
Cite this article:
Hu Q, Liao H, Liu X, et al. Boosting the piezoelectric property of relaxor ferroelectric single crystal via active manipulation of defect dipole polarization. Journal of Materiomics, 2023, 9(1): 166-173. https://doi.org/10.1016/j.jmat.2022.08.004

339

Views

4

Crossref

4

Web of Science

4

Scopus

Altmetrics

Received: 18 June 2022
Revised: 02 August 2022
Accepted: 20 August 2022
Published: 17 September 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return