To further enhance the property of piezoelectric materials is of great significance to improve the overall performance of electro-mechanical devices. Here in this work, we propose a thermal annealing and high temperature poling approach to achieve significantly enhanced piezoelectricity in Pb(In1/2Nb1/2)O3—Pb(Mg1/3Nb2/3)O3—PbTiO3 (PIN-PMN-PT) crystals with a morphotropic phase boundary (MPB) composition. The main idea of our approach is to realize a more sufficiently polarized crystal via active manipulation of defects and orientation of defect polarization. Manipulation of defect dipoles by the high temperature poling is proved by the piezo-response force microscopy. Finally, a d33 of 3300 pC/N and a SE of 0.25% are obtained, nearly 60% higher than that of conventionally poled crystals. Moreover, such a boosting of piezoelectric property is obtained under a maintained Curie temperature. Our research not only reveals the active control of defect dipole via modified poling method in the PIN-PMN-PT crystal, but also provides a feasible strategy to further improve the property of piezoelectric materials.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Research Article
Issue
Journal of Materiomics 2023, 9(1): 166-173
Published: 17 September 2022
Total 1