AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Photoluminescence manipulation in two-dimensional transition metal dichalcogenides

Minglang GaoaLingxiao YuaQian LvaFeiyu KangcZheng-Hong Huanga,b,( )Ruitao Lva,b( )
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional transition metal dichalcogenides (TMDCs) have been regarded as an intriguing platform for exploring novel physical phenomena and optoelectronic devices due to their excitonic emission characteristics derived from the atomic thin thickness and reduced dielectric screening effect. Notably, monolayer TMDCs with a direct bandgap exhibiting strong photoluminescence (PL) are promising candidates for the light-emitting devices, while the interlayer excitons in heterostructures hold great potential for the photonic chips and optical communication applications. However, the non-ideal photoluminescent intensity and quality due to the ultrathin thickness and high defect density of experimentally obtained monolayer TMDCs limit the further development for the light-emission applications. Here, we summarize the research progress on the PL manipulation of the excitonic emission in TMDCs, where the PL intensity enhancement and emission wavelength regulation are included. The concept and characteristics of excitons are overviewed firstly, followed by the discussion on the evaluation and characterization of excitonic emission. The state-of-the-art progress on the manipulation of the neutral excitons and interlayer excitons PL are then summarized. Finally, the challenges and prospects are proposed.

References

[1]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306(5696):666-9.

[2]

Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS₂: a new direct-gap semiconductor. Phys Rev Lett 2010;105(13):136805.

[3]

Sundaram RS, Engel M, Lombardo A, Krupke R, Ferrari AC, Avouris P, et al. Electroluminescence in single layer MoS2. Nano Lett 2013;13(4):1416-21.

[4]

Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 2013;8(7):497-501.

[5]

Clark G, Schaibley JR, Ross J, Taniguchi T, Watanabe K, Hendrickson JR, et al. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett 2016;16(6):3944-8.

[6]

Ye Y, Wong ZJ, Lu X, Ni X, Zhu H, Chen X, et al. Monolayer excitonic laser. Nat Photonics 2015;9(11):733-7.

[7]

Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett 2015;15(11):7307-13.

[8]

Liu B, Abbas A, Zhou C. Two-dimensional semiconductors: from materials preparation to electronic applications. Adv Electron Mater 2017;3(7):1700045.

[9]

Özdemir O, Ramiro I, Gupta S, Konstantatos G. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm. ACS Photonics 2019;6(10):2381-6.

[10]

Deng Y, Yu Y, Song Y, Zhang J, Wang NZ, Sun Z, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018;563(7729):94-9.

[11]

Bansal D, Niedziela JL, Calder S, Lanigan-Atkins T, Rawl R, Said AH, et al. Magnetically driven phonon instability enables the metal–insulator transition in h-FeS. Nat Phys 2020;16(6):669-75.

[12]

Lv Q, Wu X, Tan J, Liu B, Gan L, Li J, et al. Ultrasensitive molecular sensing of few-layer niobium diselenide. J Mater Chem 2021;9(5).

[13]

Lv Q, Qin X, Lv R. Controllable growth of few-layer niobium disulfide by atmospheric pressure chemical vapor deposition for molecular sensing. Front Mater 2019;6:279.

[14]

Lv R, dos Santos MC, Antonelli C, Feng S, Fujisawa K, Berkdemir A, et al. Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing. Adv Mater 2014;26(45):7593-9.

[15]

Lv R, Li Q, Botello-Mendez AR, Hayashi T, Wang B, Berkdemir A, et al. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2012;2:586.

[16]

Chernikov A, Berkelbach TC, Hill HM, Rigosi AF, Li Y, Aslan OB, et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys Rev Lett 2014;113:076802.

[17]

Zhang W, Wang Q, Chen Y, Wang Z, Wee ATS. Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater 2016;3(2):022001.

[18]

Ning C-Z, Dou L, Yang P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat Rev Mater 2017;2(12):17070.

[19]

Jin C, Ma EY, Karni O, Regan EC, Wang F, Heinz TF. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotechnol 2018;13(11):994-1003.

[20]

Yun WS, Han SW, Hong SC, Kim IG, Lee JD. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo,W; X= S, Se, Te). Phys Rev B 2012;85(3):033305.

[21]

Lien DH, Amani M, Desai SB, Ahn GH, Han K, He JH, et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat Commun 2018;9(1):1229.

[22]

Amani M, Lien D-H, Kiriya D, Xiao J, Azcatl A, Noh J, et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015;350(6264):1065-8.

[23]

Wang H, Zhang C, Rana F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett 2015;15(1):339-45.

[24]

Cui Q, Ceballos F, Kumar N, Zhao H. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 2014;8(3):2970-6.

[25]

Kumar N, Cui Q, Ceballos F, He D, Wang Y, Zhao H. Exciton-exciton annihilation in MoSe2 monolayers. Phys Rev B 2014;89(12):125427.

[26]

Deng S, Sumant AV, Berry V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018;22:14-35.

[27]

Li H, Duan X, Wu X, Zhuang X, Zhou H, Zhang Q, et al. Growth of alloy MoSSe nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc 2014;136(10):3756-9.

[28]

Duan X, Wang C, Fan Z, Hao G, Kou L, Halim U, et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett 2016;16(1):264-9.

[29]

Lee B, Liu W, Naylor CH, Park J, Malek SC, Berger JS, et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett 2017;17(7):4541-7.

[30]

Chakraborty B, Gu J, Sun Z, Khatoniar M, Bushati R, Boehmke AL, et al. Control of strong light–matter interaction in monolayer WS2 through electric field gating. Nano Lett 2018;18(10):6455-60.

[31]

Ceballos F, Zhao H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv Funct Mater 2017;27(19):1604509.

[32]

Ugeda MM, Bradley AJ, Shi S-F, da Jornada FH, Zhang Y, Qiu DY, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014;13(12):1091-5.

[33]

Zhang C, Chen Y, Johnson A, Li M-Y, Li L-J, Mende PC, et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett 2015;15(10):6494-500.

[34]

Zhang Y, Li H, Wang H, Liu R, Zhang S-L, Qiu Z-J. On valence-band splitting in layered MoS2. ACS Nano 2015;9(8):8514-9.

[35]

Wang G, Robert C, Glazov MM, Cadiz F, Courtade E, Amand T, et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys Rev Lett 2017;119(4):047401.

[36]

Madéo J, Man MKL, Sahoo C, Campbell M, Pareek V, Wong EL, et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 2020;370(6521):1199-204.

[37]

Lin L, Zhang Q, Li X, Qiu M, Jiang X, Jin W, et al. Electron transport across plasmonic molecular nanogaps interrogated with surface-enhanced Raman scattering. ACS Nano 2018;12(7):6492-503.

[38]

Kośmider K, González JW, Fernández-Rossier J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys Rev B 2013;88(24):245436.

[39]

Echeverry JP, Urbaszek B, Amand T, Marie X, Gerber IC. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys Rev B 2016;93(12):121107.

[40]

Zhang X-X, You Y, Zhao SYF, Heinz TF. Experimental evidence for dark excitons in monolayer WSe2. Phys Rev Lett 2015;115(25):257403.

[41]

Cheng Q, Pang J, Sun D, Wang J, Zhang S, Liu F, et al. WSe2 2D p-type semiconductor-based electronic devices for information technology: design, preparation, and applications. Info 2020;2(4):656-97.

[42]

Zhang S, Wang CG, Li MY, Huang D, Li LJ, Ji W, et al. Defect structure of localized excitons in a WSe2 monolayer. Phys Rev Lett 2017;119(4):046101.

[43]

Mak KF, He K, Lee C, Lee GH, Hone J, Heinz TF, et al. Tightly bound trions in monolayer MoS2. Nat Mater 2013;12(3):207-11.

[44]

Ross JS, Wu S, Yu H, Ghimire NJ, Jones AM, Aivazian G, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 2013;4(1):1474.

[45]

Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, del Águila AG, et al. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide. Nat Commun 2016;7(1):12715.

[46]

You Y, Zhang X-X, Berkelbach TC, Hybertsen MS, Reichman DR, Heinz TF. Observation of biexcitons in monolayer WSe2. Nat Phys 2015;11(6):477-81.

[47]

Pei J, Yang J, Wang X, Wang F, Mokkapati S, Lü T, et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 2017;11(7):7468-75.

[48]

Jadczak J, Kutrowska-Girzycka J, Kapuściński P, Huang YS, Wójs A, Bryja L. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology 2017;28(39):395702.

[49]

Moody G, Kavir Dass C, Hao K, Chen C-H, Li L-J, Singh A, et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat Commun 2015;6(1):8315.

[50]

Cadiz F, Courtade E, Robert C, Wang G, Shen Y, Cai H, et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys Rev X 2017;7(2):021026.

[51]

Dey P, Paul J, Wang Z, Stevens CE, Liu C, Romero AH, et al. Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions. Phys Rev Lett 2016;116(12):127402.

[52]

Lien DH, Uddin SZ, Yeh M, Amani M, Kim H,, et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019;364(6439):468-71.

[53]

Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013;7(2):1072-80.

[54]

Yuan L, Huang L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015;7(16):7402-8.

[55]

Yuan L, Wang T, Zhu T, Zhou M, Huang L. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J Phys Chem Lett 2017;8(14):3371-9.

[56]

He YM, Clark G, Schaibley JR, He Y, Chen MC, Wei YJ, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol 2015;10(6):497-502.

[57]

Chen S-Y, Goldstein T, Taniguchi T, Watanabe K, Yan J. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor. Nat Commun 2018;9(1):3717.

[58]

Ma Z, Ren C, Wu Y, Qiu H, Liu H, Hu Z, et al. Dopant-induced giant photoluminescence of monolayer MoS2 by chemical vapor transport. Adv Mater Interfac 2022;9(25):2200431.

[59]

Lien D-H, Uddin SZ, Yeh M, Amani M, Kim H, Ager JW, et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019;364(6439):468-71.

[60]

Kim H, Ahn GH, Cho J, Amani M, Mastandrea JP, Groschner CK, et al. Synthetic WSe2 monolayers with high photoluminescence quantum yield. Sci Adv 2019;5(1):eaau4728.

[61]

Yuan L, Wang T, Zhu T, Zhou M, Huang L. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J Phys Chem Lett 2017;8(14):3371-9.

[62]

Carozo V, Wang Y, Fujisawa K, Carvalho BR, McCreary A, Feng S, et al. Optical identification of sulfur vacancies: bound excitons at the edges of monolayer tungsten disulfide. Sci Adv 2017;3(4):e1602813.

[63]

Liu X, Hu J, Yue C, Della Fera N, Ling Y, Mao Z, et al. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014;8(10):10396-402.

[64]

Wan Y, Li E, Yu Z, Huang JK, Li MY, Chou AS, et al. Low-defect-density WS2 by hydroxide vapor phase deposition. Nat Commun 2022;13(1):4149.

[65]

Xu W, Kozawa D, Zhou Y, Wang Y, Sheng Y, Jiang T, et al. Controlling photoluminescence enhancement and energy transfer in WS-2:hBN:WS2 vertical stacks by precise interlayer distances. Small 2020;16(3):1905985.

[66]

Yu Y, Yu Y, Xu C, Cai Y-Q, Su L, Zhang Y, et al. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv Funct Mater 2016;26(26):4733-9.

[67]

Lien D-H, Kang JS, Amani M, Chen K, Tosun M, Wang H-P, et al. Engineering light outcoupling in 2D materials. Nano Lett 2015;15(2):1356-61.

[68]

Luo Z, Zheng W, Luo N, Liu B, Zheng B, Yang X, et al. Photoluminescence lightning: extraordinary oxygen modulated dynamics in WS2 monolayers. Nano Lett 2022;22(5):2112-9.

[69]

Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014;8(6):5738-45.

[70]

Zhao S, Tan J, Ke C, Feng S, Lai Y, Ding B, et al. Substitutional oxygen activated photoluminescence enhancement in monolayer transition metal dichalcogenides. Sci China Mater 2022;65(4):1034-41.

[71]

Cui Q, Luo Z, Cui Q, Zhu W, Shou H, Wu C, et al. Robust and high photoluminescence in WS2 monolayer through in situ defect engineering. Adv Funct Mater 2021;31(38):2105339.

[72]

Zheng B, Zheng W, Jiang Y, Chen S, Li D, Ma C, et al. WO3-WS2 vertical bilayer heterostructures with high photoluminescence quantum yield. J Am Chem Soc 2019;141(30):11754-8.

[73]

Tongay S, Zhou J, Ataca C, Liu J, Kang JS, Matthews TS, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 2013;13(6):2831-6.

[74]

Zheng W, Zheng B, Yan C, Liu Y, Sun X, Qi Z, et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv Sci 2019;6(7):1802204.

[75]

Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant HSJ, et al. Local strain engineering in atomically thin MoS2. Nano Lett 2013;13(11):5361-6.

[76]

Maiti R, Patil C, Saadi MASR, Xie T, Azadani JG, Uluutku B, et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat Photonics 2020;14(9):578-84.

[77]

Yu Y, Li G, Huang L, Barrette A, Cai Y-Q, Yu Y, et al. Enhancing multifunctionalities of transition-metal dichalcogenide monolayers via cation intercalation. ACS Nano 2017;11(9):9390-6.

[78]

Chang CY, Lin HT, Lai MS, Yu CL, Wu CR, Chou HC, et al. Large-area and strain-reduced two-dimensional molybdenum disulfide monolayer emitters on a three-dimensional substrate. ACS Appl Mater Interfaces 2019;11(29):26243-9.

[79]

Lin HT, Chang CY, Yu CL, Lee AB, Gu SY, Lu LS, et al. Boost lasing performances of 2D semiconductor in a hybrid tungsten diselenide monolayer/cadmium selenide quantum dots microcavity laser. Adv Opt Mater 2022:2200799.

[80]

Zuo Y, Liu C, Ding L, Qiao R, Tian J, Liu C, et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat Commun 2022;13(1):1007.

[81]

Sun D, Rao Y, Reider GA, Chen G, You Y, Brézin L, et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett 2014;14(10):5625-9.

[82]

Kim H, Uddin SZ, Higashitarumizu N, Rabani E, Javey A. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science 2021;373(6553):448-52.

[83]

Xu L, Duan W, Liu Y, Wang J, Zhao Y, Li H, et al. Twist-angle-controlled neutral exciton annihilation in WS2 homostructures. Nanoscale 2022;14(14):5537-44.

[84]

Uddin SZ, Higashitarumizu N, Kim H, Rabani E, Javey A. Engineering exciton recombination pathways in bilayer WSe2 for bright luminescence. ACS Nano 2022;16(1):1339-45.

[85]

Uchida Y, Nakandakari S, Kawahara K, Yamasaki S, Mitsuhara M, Ago H. Controlled growth of large-area uniform multilayer hexagonal boron nitride as an effective 2D substrate. ACS Nano 2018;12(6):6236-44.

[86]

Bhanu U, Islam MR, Tetard L, Khondaker SI. Photoluminescence quenching in gold - MoS2 hybrid nanoflakes. Sci Rep 2014;4(1):5575.

[87]

Chen H, Yang J, Rusak E, Straubel J, Guo R, Myint YW, et al. Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Sci Rep 2016;6(1):22296.

[88]

Pan R, Kang J, Li Y, Zhang Z, Li R, Yang Y. Highly enhanced photoluminescence of monolayer MoS2 in plasmonic hybrids with double-layer stacked Ag nanoparticles. ACS Appl Mater Interfaces 2022;14(10):12495-503.

[89]

Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J, Lou J. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2–Au nanostructures. ACS Nano 2014;8(12):12682-9.

[90]

Guo J, Li S, He Z, Li Y, Lei Z, Liu Y, et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance. Appl Surf Sci 2019;483:1037-43.

[91]

Luo Z, Xie Y, Li Z, Wang Y, Li L, Luo Z, et al. Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res 2022;15(4):3539-47.

[92]

Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 2009;3(11):654-7.

[93]

Hao Q, Pang J, Zhang Y, Wang J, Ma L, Schmidt OG. Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10 nm gap. Adv Opt Mater 2018;6(2):1700984.

[94]

Lu D, Chen Y, Kong L, Luo C, Lu Z, Tao Q, et al. Strain-plasmonic coupled broadband photodetector based on monolayer MoS2. Small 2022;18(14):2107104.

[95]

Liang M, Han C, Zheliuk O, Chen Q, Wan P, Peng X, et al. A flip-over plasmonic structure for photoluminescence enhancement of encapsulated WS2 monolayers. Adv Opt Mater 2021;9(16):2100397.

[96]

Wu ZQ, Yang JL, Manjunath NK, Zhang YJ, Feng SR, Lu YH, et al. Gap-mode surface-plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv Mater 2018;30(27):1706527.

[97]

Akselrod GM, Ming T, Argyropoulos C, Hoang TB, Lin Y, Ling X, et al. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors. Nano Lett 2015;15(5):3578-84.

[98]

Vahala KJ. Optical microcavities. Nature 2003;424(6950):839-46.

[99]

Liu J, Bo F, Chang L, Dong C-H, Ou X, Regan B, et al. Emerging material platforms for integrated microcavity photonics. Sci China Phys Mech 2022;65(10):104201.

[100]

Tian Y, Guo Z, Liu Z, Lin H, Li X, Chen J, et al. Efficiently enhanced the visible-light absorption of monolayer WS2 by constructing an asymmetric Fabry-Perot cavity. Mater Today Nano 2021;14:100112.

[101]

Song BS, Yamada S, Asano T, Noda S. Demonstration of two-dimensional photonic crystals based on silicon carbide. Opt Express 2011;19(12):11084-9.

[102]

Chalcraft ARA, Lam S, O'Brien D, Krauss TF, Sahin M, Szymanski D, et al. Mode structure of the L3 photonic crystal cavity. Appl Phys Lett 2007;90(24):241117.

[103]

Mi Y, Zhang Z, Zhao L, Zhang S, Chen J, Ji Q, et al. Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method. Small 2017;13(42):1701694.

[104]

Wu S, Buckley S, Schaibley JR, Feng L, Yan J, Mandrus DG, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015;520(7545):69-72.

[105]

Li Y, Zhang J, Huang D, Sun H, Fan F, Feng J, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotechnol 2017;12(10):987-92.

[106]

Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov AV, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat Commun 2016;7(1):13328.

[107]

Fang H, Liu J, Li H, Zhou L, Liu L, Li J, et al. 1305 nm few-layer MoTe2-on-Silicon laser-like emission. Laser Photon Rev 2018;12(6):1800015.

[108]

Zhao L, Shang Q, Gao Y, Shi J, Liu Z, Chen J, et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition. ACS Nano 2018;12(9):9390-6.

[109]

Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat Commun 2017;8(1):543.

[110]

Zhu G, Shi X, Huang G, Liu K, Wei W, Guo Q, et al. Highly polarized light emission of monolayer WSe2 coupled with gap-plasmon nanocavity. Adv Opt Mater 2022;10(5):2101762.

[111]

Liu X, Galfsky T, Sun Z, Xia F, Lin E-c, Lee Y-H, et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat Photonics 2015;9(1):30-4.

[112]

Flatten LC, He Z, Coles DM, Trichet AAP, Powell AW, Taylor RA, et al. Room-temperature exciton-polaritons with two-dimensional WS2. Sci Rep 2016;6(1):33134.

[113]

Hu T, Wang Y, Wu L, Zhang L, Shan Y, Lu J, et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Appl Phys Lett 2017;110(5):051101.

[114]

Hu F, Luan Y, Scott ME, Yan J, Mandrus DG, Xu X, et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat Photonics 2017;11(6):356-60.

[115]

Wang S, Li S, Chervy T, Shalabney A, Azzini S, Orgiu E, et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett 2016;16(7):4368-74.

[116]

Zhao J, Su R, Fieramosca A, Zhao W, Du W, Liu X, et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Lett 2021;21(7):3331-9.

[117]

Chikkaraddy R, Zheng X, Benz F, Brooks LJ, de Nijs B, Carnegie C, et al. How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror. ACS Photonics 2017;4(3):469-75.

[118]

Kleemann M-E, Chikkaraddy R, Alexeev EM, Kos D, Carnegie C, Deacon W, et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat Commun 2017;8(1):1296.

[119]

Bisht A, Cuadra J, Wersäll M, Canales A, Antosiewicz TJ, Shegai T. Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett 2019;19(1):189-96.

[120]

Wang G, Robert C, Suslu A, Chen B, Yang S, Alamdari S, et al. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat Commun 2015;6(1):10110.

[121]

Chen Y, Xi J, Dumcenco DO, Liu Z, Suenaga K, Wang D, et al. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013;7(5):4610-6.

[122]

Wu X, Li H, Liu H, Zhuang X, Wang X, Fan X, et al. Spatially composition-modulated two-dimensional WS2xSe2(1-x) nanosheets. Nanoscale 2017;9(14):4707-12.

[123]

Klee V, Preciado E, Barroso D, Nguyen AE, Lee C, Erickson KJ, et al. Superlinear composition-dependent photocurrent in CVD-grown monolayer MoSSe alloy devices. Nano Lett 2015;15(4):2612-9.

[124]

Gong Y, Liu Z, Lupini AR, Shi G, Lin J, Najmaei S, et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett 2014;14(2):442-9.

[125]

Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 2017;11(8):8192-8.

[126]

Niehues I, Schmidt R, Drüppel M, Marauhn P, Christiansen D, Selig M, et al. Strain control of exciton–phonon coupling in atomically thin semiconductors. Nano Lett 2018;18(3):1751-7.

[127]

He K, Poole C, Mak KF, Shan J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 2013;13(6):2931-6.

[128]

Conley HJ, Wang B, Ziegler JI, Haglund RF, Pantelides ST, Bolotin KI. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 2013;13(8):3626-30.

[129]

Desai SB, Seol G, Kang JS, Fang H, Battaglia C, Kapadia R, et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 2014;14(8):4592-7.

[130]

Li Z, Lv Y, Ren L, Li J, Kong L, Zeng Y, et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat Commun 2020;11(1):1151.

[131]

Ross JS, Klement P, Jones AM, Ghimire NJ, Yan J, Mandrus DG, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol 2014;9(4):268-72.

[132]

Chernikov A, van der Zande AM, Hill HM, Rigosi AF, Velauthapillai A, Hone J, et al. Electrical tuning of exciton binding energies in monolayer WS2. Phys Rev Lett 2015;115(12):126802.

[133]

Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat Nanotechnol 2016;11(7):598-602.

[134]

Tang H, Luo F, Cui Z, Xiao Y, Xu W, Zhu Z, et al. Electrically controlled wavelength-tunable photoluminescence from van der Waals heterostructures. ACS Appl Mater Interfaces 2022;14(17):19869-77.

[135]

Kern J, Trügler A, Niehues I, Ewering J, Schmidt R, Schneider R, et al. Nanoantenna-enhanced light–matter interaction in atomically thin WS2. ACS Photonics 2015;2(9):1260-5.

[136]

Shafi AM, Ahmed F, Fernandez HA, Uddin MG, Cui X, Das S, et al. Inducing strong light–matter coupling and optical anisotropy in monolayer MoS2 with high refractive index nanowire. ACS Appl Mater Interfaces 2022;14(27):31140-7.

[137]

Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 2012;7(8):494-8.

[138]

Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 2012;3(1):887.

[139]

Lin W-H, Tseng W-S, Went CM, Teague ML, Rossman GR, Atwater HA, et al. Nearly 90% circularly polarized emission in monolayer WS2 single crystals by chemical vapor deposition. ACS Nano 2020;14(2):1350-9.

[140]

Aivazian G, Gong Z, Jones AM, Chu R-L, Yan J, Mandrus DG, et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys 2015;11(2):148-52.

[141]

Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoğlu A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat Phys 2015;11(2):141-7.

[142]

Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat Nanotechnol 2017;12(8):757-62.

[143]

Zhang X-X, Cao T, Lu Z, Lin Y-C, Zhang F, Wang Y, et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat Nanotechnol 2017;12(9):883-8.

[144]

Ongun zelik V, Javad G Azadani, et al. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys Rev B 2016;94(3):35125.

[145]

Rivera P, Schaibley JR, Jones AM, Ross JS, Wu S, Aivazian G, et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat Commun 2015;6(1):6242.

[146]

Ji J, Choi JH. Understanding the effects of dielectric property, separation distance, and band alignment on interlayer excitons in 2D hybrid MoS2/WSe2 heterostructures. ACS Appl Electron Mater 2021;3(7):3052-9.

[147]

Wilson NR, Nguyen PV, Seyler K, Rivera P, Marsden AJ, Laker ZPL, et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci Adv 2017;3(2):e1601832.

[148]

Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat Commun 2016;7(1):12512.

[149]

Nayak PK, Horbatenko Y, Ahn S, Kim G, Lee JU, Ma KY, et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017;11(4):4041-50.

[150]

Heo H, Sung JH, Cha S, Jang BG, Kim JY, Jin G, et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat Commun 2015;6(1):7372.

[151]

Yuan L, Zheng B, Kunstmann J, Brumme T, Kuc AB, Ma C, et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat Mater 2020;19(6):617-23.

[152]

Choi J, Hsu WT, Lu LS, Sun L, Cheng HY, Lee MH, et al. Moire potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci Adv 2020;6(39):eaba8866.

[153]

Ciarrocchi A, Unuchek D, Avsar A, Watanabe K, Taniguchi T, Kis A. Control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat Photonics 2018;13:131-6.

[154]

Wang Z, Chiu Y-H, Honz K, Mak KF, Shan J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett 2018;18(1):137-43.

[155]

Jauregui LA, Joe AY, Pistunova K, Wild DS, High AA, Zhou Y, et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 2019;366(6467):870-5.

[156]

Li L, Zheng W, Ma C, Zhao H, Jiang F, Ouyang Y, et al. Wavelength-tunable interlayer exciton emission at the near-infrared region in van der Waals semiconductor heterostructures. Nano Lett 2020;20(5):3361-8.

[157]

Cho C, Wong J, Taqieddin A, Biswas S, Aluru NR, Nam S, et al. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett 2021;21(9):3956-64.

[158]

Liu Y, Fang H, Rasmita A, Zhou Y, Li J, Yu T, et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci Adv 2019;5(4):eaav4506.

[159]

Paik EY, Zhang L, Burg GW, Gogna R, Tutuc E, Deng H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019;576(7785):80-4.

[160]

Unuchek D, Ciarrocchi A, Avsar A, Watanabe K, Taniguchi T, Kis A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018;560(7718):340-4.

[161]

Liu Y, Dini K, Tan Q, Liew T, Novoselov KS, Gao W. Electrically controllable router of interlayer excitons. Sci Adv 2020;6(41):eaba1830.

[162]

Long M, Liu E, Wang P, Gao A, Xia H, Luo W, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett 2016;16(4):2254-9.

[163]

Lukman S, Ding L, Xu L, Tao Y, Riis-Jensen AC, Zhang G, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat Nanotechnol 2020;15(8):675-82.

[164]

Fu Q, Hu Z, Zhou M, Lu J, Ni Z. Excitonic emission in atomically thin electroluminescent devices. Laser Photon Rev 2021;15(6):2000587.

Journal of Materiomics
Pages 768-786
Cite this article:
Gao M, Yu L, Lv Q, et al. Photoluminescence manipulation in two-dimensional transition metal dichalcogenides. Journal of Materiomics, 2023, 9(4): 768-786. https://doi.org/10.1016/j.jmat.2023.02.005

126

Views

9

Crossref

8

Web of Science

8

Scopus

Altmetrics

Received: 04 October 2022
Revised: 14 February 2023
Accepted: 16 February 2023
Published: 09 March 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return