AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Topotactic transition of Ti4AlN3 MAX phase in Lewis acid molten salt

Xinbo Liua,b,c,1Youbing Lia,c,1Haoming Dinga,b,cLu Chena,b,cShiyu Dua,cZhifang Chaia,cQing Huanga,c( )
Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
Qianwan Institute of CNiTECH, Ningbo, 315336, China

1 Xinbo Liu and Youbing Li contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications. Lewis acid molten salt route provides an opportunity for structure design and performance manipulation of new MAX phases and MXenes, Although a series of new MAX phases and MXenes were successfully prepared via Lewis acid melt route in recent years, few work is explored on nitride MAX phases and MXenes. Herein, a new copper-based 413-type Ti4CuN3 MAX phase was synthesized through isomorphous replacement reaction using Ti4AlN3 MAX phase precursor in molten CuCl2. In addition, it was found that at high temperature Ti4N3Clx MXene will transform into two-dimensional cubic TiNα nanosheets with improved structural stability.

References

[1]

Barsoum MW. The Mn+1AXn phases: a new class of solids: thermodynamically stable nanolaminates. Prog Solid State Chem 2000;28:201–81. https://doi.org/10.1016/S0079-6786(00)00006-6.

[2]

Gonzalez-Julian J. Processing of MAX phases: from synthesis to applications. J Am Ceram Soc 2021;104(2):659–90. https://doi.org/10.1111/jace.17544.

[3]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23(37):4248–53. https://doi.org/10.1002/adma.201102306.

[4]

Mohammadi AV, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021;372:abf1581. https://doi.org/10.1126/science.abf1581.

[5]

Fu L, Xia W. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications. Adv Eng Mater 2021;23(4):2001191. https://doi.org/10.1002/adem.202001191.

[6]

Nappé JC, Grosseau P, Audubert F, Guilhot B, Beauvy M, Benabdesselam M, et al. Damages induced by heavy ions in titanium silicon carbide: effects of nuclear and electronic interactions at room temperature. J Nucl Mater 2009;385(2):304–7. https://doi.org/10.1016/j.jnucmat.2008.12.018.

[7]

Li M, Lu J, Luo K, Li YB, Chang KK, Chen K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 2019;141(11):4730–7. https://doi.org/10.1021/jacs.9b00574.

[8]

Li YB, Shao H, Lin ZF, Lu J, Liu LY, Duployer B, et al. A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 2020;19(8):894–9. https://doi.org/10.1038/s41563-020-0657-0.

[9]

Li M, Li XL, Qin GF, Luo K, Lu J, Li YB, et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021;15(1):1077–85. https://doi.org/10.1021/acsnano.0c07972.

[10]

Naguib M, Come J, Dyatkin B, Presser V, Taberna PL, Simon P, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 2012;16(1):61–4. https://doi.org/10.1016/j.elecom.2012.01.002.

[11]

Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341(6153):1502–5. https://doi.org/10.1126/science.1241488.

[12]

Liu CK, Tian Y, An YL, Yang QL, Xiong SL, Feng JK, et al. Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. Chem Eng J 2022;430:132748. https://doi.org/10.1016/j.cej.2021.132748.

[13]

Wei CL, Tao Y, An YL, Tian Y, Zhang YC, Feng JK, et al. Recent advances of emerging 2d MXene for stable and dendrite-free metal anodes. Adv Funct Mater 2020;30(45):2004613. https://doi.org/10.1002/adfm.202004613.

[14]

Li YB, Li M, Lu J, Ma BK, Wang ZP, Cheong LZ, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1–x)C2 and its artificial enzyme behavior. ACS Nano 2019;13(8):9198–205. https://doi.org/10.1021/acsnano.9b03530.

[15]

Li YB, Liang JH, Ding HM, Lu J, Mu XL, Yan PF, et al. Near-room temperature ferromagnetic behavior of single-atom-thick 2d iron in nanolaminated ternary MAX phases. Appl Phys Rev 2021;8(3):031418. https://doi.org/10.1063/5.0059078.

[16]

Li YB, Zhu SR, Wu EX, Ding HM, Lu J, Mu XL, et al. Nanolaminated ternary transition metal carbide (MAX phase)-derived core–shell structure electrocatalysts for hydrogen evolution and oxygen evolution reactions in alkaline electrolytes. J Phys Chem Lett 2023;14(2):481–8. https://doi.org/10.1021/acs.jpclett.2c03230.

[17]

Ding HM, Li YB, Lu J, Luo K, Chen K, Li M, et al. Synthesis of max phases Nb2CuC and Ti2(Al0.1Cu0.9)N by a-site replacement reaction in molten salts. Mater Res Lett 2019;7(12):510–6. https://doi.org/10.1080/21663831.2019.1672822.

[18]

Kamysbayev V, Filatov AS, Hu HC, Rui X, Lagunas F, Wang D, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020;369(6506):979–83. https://doi.org/10.1126/science.aba8311.

[19]

Urbankowski P, Anasori B, Makaryan T, Er DQ, Kota S, Walsh PL, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016;8(22):11385–91. https://doi.org/10.1039/c6nr02253g.

[20]

Chen JJ, Jin QQ, Li YB, Shao H, Liu PC, Liu Y, et al. Molten salt-shielded synthesis (MS3) of MXenes in air. Energy Environ Mater 2021;6:e12328. https://doi.org/10.1002/eem2.12328.

[21]

Shein IR, Ivanovskii AL. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated max phases: first-principles probing of their structural, electronic properties and relative stability. Comput Mater Sci 2012;65:104–14. https://doi.org/10.1016/j.commatsci.2012.07.011.

[22]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26(7):992–1005. https://doi.org/10.1002/adma.201304138.

[23]

Rawn CJ, Barsoum MW, El-Raghy T, Procipio A, Hoffmann CM, Hubbard CR. Structure of Ti4AlN3—a layered Mn+1AXn nitride. Mater Res Bull 2000;35(11):1785–96. https://doi.org/10.1016/S0025-5408(00)00383-4.

[24]

Huang X, Tang JY, Qiu TF, Knibbe R, Hu YX, Schülli TU, et al. Nanoconfined topochemical conversion from MXene to ultrathin non-layered tin nanomesh toward superior electrocatalysts for lithium-sulfur batteries. Small 2021;17:2101360. https://doi.org/10.1002/smll.202101360.

[25]

Zhang MJ. Electrochemical principle and application of molten salt. Beijing: Chemcal Industry Press; 2006. p. 237–40.

[26]

Lee YK, Kim JY, Lee YK, Lee MS, Kim DK, Jin DY, et al. Surface chemistry of non-stoichiometric TiNx films grown on (100)Si substrate by dc reactive magnetron sputtering. J Cryst Growth 2002;234:498–504. https://doi.org/10.1016/S0022-0248(01)01742-0.

Journal of Materiomics
Pages 1032-1038
Cite this article:
Liu X, Li Y, Ding H, et al. Topotactic transition of Ti4AlN3 MAX phase in Lewis acid molten salt. Journal of Materiomics, 2023, 9(6): 1032-1038. https://doi.org/10.1016/j.jmat.2023.03.012

134

Views

7

Crossref

9

Web of Science

10

Scopus

Altmetrics

Received: 23 January 2023
Revised: 20 March 2023
Accepted: 23 March 2023
Published: 28 April 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return