AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

[001]-texturing of (K, Na)NbO3-based piezoceramics with a pseudocubic structure and their application to piezoelectric devices

Su-Hwan Go1Seok-Jung Park1Seung-Hyun KimSeok-June ChaeEun-Ji KimGeun-Su LeeSahn Nahm( )
Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea

Peer review under responsibility of The Chinese Ceramic Society.

1 These authors contributed equally to this study.

Show Author Information

Graphical Abstract

Abstract

0.96(K0.5Na0.5-zLiz) (Nb0.92Sb0.08)O3-0.04(Ca0.5Sr0.5)ZrO3 [(KN0.5-zLz)NS-CSZ] piezoceramics (0 ≤ z ≤ 0.04) were aligned in the [001] orientation using 3% (in mole) NaNbO3 templates with a large Lotgering factor (>97%). Their crystal structures transformed from the orthorhombic-pseudocubic (OP) structure to the orthorhombic-tetragonal-pseudocubic (O-T-P) structure with an increasing z. The P structure was interpreted as a rhombohedral R3m structure. The piezoelectricity of the compositions increased after [001]-texturing, and the enhancement was proportional to the O phase quantity. The composition (z = 0.03) exhibited the highest piezoelectric constant (d33; 670 pC/N) and electromechanical coupling factor (kp; 0.56). Piezoelectric energy harvesters were produced using the untextured and textured samples (z = 0.03). The textured harvester delivered a large power density of 26.6 mW/mm3, which was larger than that of the untextured harvester owing to the enhanced kp and d33 × g33 of the textured piezoceramic. A multilayer actuator was produced using the textured sample (z = 0.03), and it exhibited a large acceleration (44.2 G) and displacement (±3,730 μm) at ±25 V. Therefore, the [001]-textured (KN0.47L0.03)NS-CSZ piezoceramic is suitable for piezoelectric energy harvesters and actuators.

References

[1]

Panda P. Environmental friendly lead-free piezoelectric materials. J Mater Sci 2009;44:5049-5062.

[2]

Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 2007;19:113-126.

[3]

Lv X, Zhu J, Xiao D, Zhang X-X, Wu J. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem Soc Rev 2020;49:671-707.

[4]

Zhang Y, Li J-F. Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J Mater Chem C 2019;7:4284-4303.

[5]

Xing J, Zheng T, Wu J, Xiao D, Zhu J. Progress on the doping and phase boundary design of potassium–sodium niobate lead-free ceramics. J Adv Dielectr 2018;8:1830003.

[6]

Xue D, Shi M, Chen Y, Liu K, Chen Z, Jiang X. Piezoelectric and dielectric properties of lead-free 0.96(K0.48Na0.535)0.96Li0.04Nb1-xSbxO3-0.04CaZrO3 ceramics with rhombohedral–orthorhombic phase boundary. Ferroelectrics 2017;514:1-8.

[7]

Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D. Rhombohedral–orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics. Curr Appl Phys 2013;13:1647-1650.

[8]

Zuo R, Fu J, Lv D, Liu Y. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J Am Ceram 2010;93:2783-2787.

[9]

Li Q, Zhang M-H, Zhu Z-X, Wang K, Zhou J-S, Yao F-Z, et al. Poling engineering of (K, Na)NbO3-based lead-free piezoceramics with orthorhombic–tetragonal coexisting phases. J Mater Chem C 2017;5:549-556.

[10]

Gao Y, Zhang J, Qing Y, Tan Y, Zhang Z, Hao X. Remarkably strong piezoelectricity of lead-Free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J Am Ceram 2011;94:2968-2973.

[11]

Lee KT, Lee TG, Kim SW, Chae SJ, Kim EJ, Kim JS, et al. Thermally stable high strain and piezoelectric characteristics of (Li, Na, K)(Nb, Sb)O3-CaZrO3 ceramics for piezo actuators. J Am Ceram 2019;102:6115-6125.

[12]

Zhou C, Zhang J, Yao W, Wang X, Liu D, Sun X. Piezoelectric performance, phase transitions, and domain structure of 0.96 (K0.48Na0.52)(Nb0.96Sb0.04)O3−0.04(Bi0.50Na0.50)ZrO3 ceramics. J Appl Phys 2018;124:164101.

[13]

Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, et al. Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv Mater 2016;28:8519-8523.

[14]

Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 2017;10:528-537.

[15]

Wu B, Wu H, Wu J, Xiao D, Zhu J, Pennycook SJ. Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J Am Chem Soc 2016;138:15459-15464.

[16]

Go SH, Kim DS, Eum JM, Shin HS, Chae SJ, Kim SW, et al. Excellent piezoelectric properties of (K, Na)(Nb, Sb)O3-CaZrO3-(Bi, Ag)ZrO3 lead-free piezoceramics. J Alloys Compd 2021;889:161817.

[17]

Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J Am Chem Soc 2019;141:13987-13994.

[18]

Kim DS, Eum JM, Go SH, Shin HS, Kim H, Chae SJ, et al. Remarkable piezoelectric performance and good thermal stability of <001>-textured 0.96 (K0.5Na0.5)(Nb1-ySby)O3-0.04SrZrO3 lead-free piezoelectric ceramics. J Alloys Compd 2021;882:160662.

[19]

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Nature 2004;432:84-87.

[20]

Messing GL, Trolier-McKinstry S, Sabolsky E, Duran C, Kwon S, Brahmaroutu B, et al. Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State Mater Sci 2004;29:45-96.

[21]

Gao L, Dursun S, Gurdal AE, Hennig E, Zhang S, Randall CA. Atmospheric controlled processing enabling highly textured NKN with enhanced piezoelectric performance. J Eur Ceram 2019;39:963-972.

[22]

Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, et al. Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv Mater 2018;30:1705171.

[23]

Chae SJ, Kim DS, Kim H, Go SH, Kim SW, Kim EJ, et al. Structural and piezoelectric properties of textured NLKNS-CZ thick films and their application in planar piezoactuator. J Am Ceram Soc 2022;105:1185-1197.

[24]

Go SH, Kim H, Kim DS, Eum JM, Chae SJ, Kim EJ, et al. Improvement of piezoelectricity of (Na, K)Nb-based lead-free piezoceramics using [001]-texturing for piezoelectric energy harvesters and actuators. J Eur Ceram 2022;42:6478-6492.

[25]

Li F, Zhang S, Lin D, Luo J, Xu Z, Wei X, et al. Electromechanical properties of Pb (In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J Appl Phys 2011;109:014108.

[26]

Li F, Zhang S, Xu Z, Wei X, Luo J, Shrout TR. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1−x)Pb(Mg1/3Nb2/3) O3xPbTiO3 crystals. J Appl Phys 2010;108:034106.

[27]

Liu Y, Chang Y, Li F, Yang B, Sun Y, Wu J, et al. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl Mater Interfaces 2017;9:29863-29871.

[28]

Go SH, Kim DS, Chae YG, Chae SJ, Kim EJ, Yu HM, et al. Effect of the crystal structure on the piezoelectricity of [001]-Textured (Na, K)(Nb, Sb)O3-srZrO3-(Bi, Ag)ZrO3 lead-free piezoelectric thick film. Actuators 2023;12:66.

[29]

Lee TG, Cho SH, Kim DH, Hwang HG, Lee KT, Hong CH, et al. Various cubic-based polymorphic phase boundary structures in (1-y)(Na0.5K0.5)(Nb1-xSbx)-yCaTiO3 ceramics and their piezoelectric properties. J Eur Ceram 2019;39:973-985.

[30]

Lee KT, Kim DH, Cho SH, Kim JS, Ryu J, Ahn CW, et al. Pseudocubic-based polymorphic phase boundary structures and their effect on the piezoelectric properties of (Li, Na, K)(Nb, Sb)O3-SrZrO3 lead-free ceramics. J Alloys Compd 2019;784:1334-1343.

[31]

Lee KT, Kim DH, Park JS, Lee TG, Cho SH, Park SJ, et al. Orthorhombic-pseudocubic phase transition and piezoelectric properties of (Na0.5K0.5)(Nb1-xSbx)-SrZrO3 ceramics. J Am Ceram 2017;100:4827-4835.

[32]

Lee TG, Nahm S. Review of sintering technologies, structural characteristics, and piezoelectric properties of NKN-based lead-free ceramics. Trans Electr Electron Mater 2019;20:385-402.

[33]

Kim H, Kim DS, Chae SJ, Go SH, Kim SW, Lee DG, et al. Simultaneous realization of high d33 and large strain in (K, Na, Li)(Nb, Sb)O3-(Ca, Sr)ZrO3 materials and their application in piezoelectric actuators. Ceram Int 2021;47:34443-34454.

[34]

Yan Y, Geng LD, Liu H, Leng H, Li X, Wang YU, et al. Near-ideal electromechanical coupling in textured piezoelectric ceramics. Nat Commun 2022;13:3565.

[35]

Chae YG, Chae SJ, Go SH, Kim EJ, Park SJ, Song HS, et al. Ultrahigh performance piezoelectric energy harvester using lead-free piezoceramics with large electromechanical coupling factor. Int J Energy Res 2023:20.

[36]

Islam RA, Priya S. High-energy density ceramic composition in the system Pb(Zr, Ti) O3–Pb[(Zn,Ni)1/3Nb2/3]O3. J Am Ceram Soc 2006;89:3147-3156.

[37]

Islam RA, Priya S. Realization of high-energy density polycrystalline piezoelectric ceramics. Appl Phys Lett 2006;88.

[38]

Fan P, Liu K, Ma W, Tan H, Zhang Q, Zhang L, et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J Materiomics 2021;7:508-544.

[39]

Wang Q, Li F. A low-working-field (2 kV/mm), large-strain (> 0.5%) piezoelectric multilayer actuator based on periodically orthogonal poled PZT ceramics. Sens Actuator A Phys 2018;272:212-216.

[40]

Fan P, Zhang Y, Zhang S-T, Xie B, Zhu Y, Marwat MA, et al. Low-temperature sintered (Na1/2Bi1/2)TiO3-based incipient piezoceramics for co-fired multilayer actuator application. J Materiomics 2019;5:480-488.

[41]

Chang Y, Yang Z, Chao X, Liu Z, Wang Z. Synthesis and morphology of anisotropic NaNbO3 seed crystals. Mater Chem Phys 2008;111:195-200.

[42]

Yan Y, Liu D, Zhao W, Zhou H, Fang H. Topochemical synthesis of a high-aspect-ratio platelet NaNbO3 template. J Am Ceram Soc 2007;90:2399-2403.

[43]

Orayech B, Faik A, López G, Fabelo O, Igartua J. Mode-crystallography analysis of the crystal structures and the low-and high-temperature phase transitions in Na0.5K0.5NbO3. J Appl Crystallogr 2015:48318-48333.

[44]

Zhao R, Li Y, Zheng Z, Kang W. Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics. Mater Chem Phys 2020;245:122806.

[45]

Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 2013;96:3677-3696.

[46]

Uchino K, Nomura S. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 1982;44:55-61.

[47]

Lv X, Zhang X-X, Wu J. Nano-domains in lead-free piezoceramics: a review. J Mater Chem A 2020;8:10026-10073.

[48]

Torres-Matheus OA, García RE, Bishop CM. Microstructural phase coexistence kinetics near the polymorphic phase boundary. Acta Mater 2021;206:116579.

[49]

Zhang H, Zhu Y, Fan P, Marwat MA, Ma W, Liu K, et al. Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of < 001> textured (K, Na)NbO3-based lead-free piezoceramics. Acta Mater 2018;156:389-398.

[50]

Yilmaz H, Trolier-McKinstry S, Messing GL. (Reactive) templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3-BaTiO3) ceramics—Ⅱ dielectric and piezoelectric properties. J Electroceram 2003;11:217-226.

[51]

Schenk T, Yurchuk E, Mueller S, Schroeder U, Starschich S, Böttger U, et al. About the deformation of ferroelectric hystereses. Appl Phys Rev 2014;1:041103.

[52]

Weitzing H, Schneider G, Steffens J, Hammer M, Hoffmann M. Cyclic fatigue due to electric loading in ferroelectric ceramics. J Eur Ceram 1999;19:1333-1337..

[53]

Kim SW, Lee TG, Kim DH, Lee KT, Jung I, Kang CY, et al. Determination of the appropriate piezoelectric materials for various types of piezoelectric energy harvesters with high output power. Nano Energy 2019;57:581-591.

[54]

Covaci C, Gontean A. Piezoelectric energy harvesting solutions: a review. Sensors 2020;20:3512.

[55]
Xu Y. Ferroelectric materials and their applications. Elsevier; 2013.
Journal of Materiomics
Pages 632-642
Cite this article:
Go S-H, Park S-J, Kim S-H, et al. [001]-texturing of (K, Na)NbO3-based piezoceramics with a pseudocubic structure and their application to piezoelectric devices. Journal of Materiomics, 2024, 10(3): 632-642. https://doi.org/10.1016/j.jmat.2023.08.014

155

Views

5

Crossref

7

Web of Science

6

Scopus

Altmetrics

Received: 15 July 2023
Revised: 15 August 2023
Accepted: 17 August 2023
Published: 27 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return