AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Surface and structure engineering of MXenes for rechargeable batteries beyond lithium

Zefu Huanga,1Majid Farahmandjoua,1Frederick MarltonaXin GuoaHong Gaob,( )Bing Suna,( )Guoxiu Wanga,( )
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering Shanghai University, Shanghai, 200444, China

1 Zefu Huang and Majid Farahmandjou contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

With the rapid growth in renewable energy, researchers worldwide are trying to expand energy storage technologies. The development of beyond-lithium battery technologies has accelerated in recent years, amid concerns regarding the sustainability of battery materials. However, the absence of suitable high-performance materials has hampered the development of the next-generation battery systems. MXenes, a family of 2D transition metal carbides and/or nitrides, have drawn significant attention recently for electrochemical energy storage, owing to their unique physical and chemical properties. The extraordinary electronic conductivity, compositional diversity, expandable crystal structure, superior hydrophilicity, and rich surface chemistries make MXenes promising materials for electrode and other components in rechargeable batteries. This report especially focuses on the recent MXene applications as novel electrode materials and functional separator modifiers in rechargeable batteries beyond lithium. In particular, we highlight the recent advances of surface and structure engineering strategies for improving the electrochemical performance of the MXene-based materials, including surface termination modifications, heteroatom doping strategies, surface coating, interlayer space changes, nanostructure engineering, and heterostructures and secondary materials engineering. Finally, perspectives for building future sustainable rechargeable batteries with MXenes and MXene-based composite materials are presented based upon material design and a fundamental understanding of the reaction mechanisms.

References

[1]

Miller JR, Simon P. Electrochemical capacitors for energy management. Science 2008;321:651-2.

[2]

Risacher F, Fritz B. Origin of salts and brine evolution of bolivian and chilean salars. Aquat Geochem 2009;15:123-57.

[3]

Liu Y, Li J, Shen Q, Zhang J, He P, Qu X, et al. Advanced characterizations and measurements for sodium-ion batteries with nasicon-type cathode materials. eScience 2022;2:10-31.

[4]

Eames C, Islam MS. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J Am Chem Soc 2014;136:16270-6.

[5]

Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 2014;6:11173-9.

[6]

Moreau P, Guyomard D, Gaubicher J, Boucher F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 2010;22:4126-8.

[7]

Lu Y, Wang L, Cheng J, Goodenough JB. Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 2012;48:6544-6.

[8]

Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci 2013;6:2312-37.

[9]

Singh N, Arthur TS, Ling C, Matsui M, Mizuno F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 2013;49:149-51.

[10]

Qian J, Xiong Y, Cao Y, Ai X, Yang H. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett 2014;14:1865-9.

[11]

Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, et al. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013;7:6378-86.

[12]

Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 2012;134:20805-11.

[13]

Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2012;2:873-7.

[14]

Yang J, Wang T, Guo X, Sheng X, Li J, Wang C, et al. Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx mxene film anodes. Nano Res 2023;16:5592-600.

[15]

Wang S, Zhao S, Guo X, Wang G. 2D material-based heterostructures for rechargeable batteries. Adv Energy Mater 2022;12:2100864.

[16]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021;372:eabf1581.

[17]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248-53.

[18]

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS Nano 2012;6:1322-31.

[19]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26:992-1005.

[20]

Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun 2015;6:6544.

[21]

Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan LM, Zhang B, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun 2014;50:9517-20.

[22]

Zhao M-Q, Xie X, Ren CE, Makaryan T, Anasori B, Wang G, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater 2017;29:1702410.

[23]

Zhang C, Anasori B, Seral-Ascaso A, Park S-H, McEvoy N, Shmeliov A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 2017;29:1702678.

[24]

Aslam MK, Xu M. A mini-review: Mxene composites for sodium/potassium-ion batteries. Nanoscale 2020;12:15993-6007.

[25]

Aslam MK, Niu Y, Xu M. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv Energy Mater 2021;11:2000681.

[26]

Ming F, Liang H, Huang G, Bayhan Z, Alshareef HN. Mxenes for rechargeable batteries beyond the lithium-ion. Adv Mater 2021;33:2004039.

[27]

Bhat A, Anwer S, Bhat KS, Mohideen MIH, Liao K, Qurashi A. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D Mater Appl 2021;5:61.

[28]

Li J, Guo C, Li CM. Recent advances of two-dimensional (2D) MXenes and phosphorene for high-performance rechargeable batteries. ChemSusChem 2020;13:1047-70.

[29]

Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano 2019;13:8491-4.

[30]

Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020;370:708-11.

[31]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.

[32]
Anasori B, Gogotsi Y. 2D metal carbides and nitrides (MXenes): Structure, properties and applications. Introduction to 2D transition metal carbides and nitrides (MXenes). Cham: Springer International Publishing; 2019. p. 3-12.
[33]

Hong W, Wyatt BC, Nemani SK, Anasori B. Double transition-metal MXenes: atomistic design of two-dimensional carbides and nitrides. MRS Bull 2020;45:850-61.

[34]

Xu X, Yang L, Zheng W, Zhang H, Wu F, Tian Z, et al. MXenes with applications in supercapacitors and secondary batteries: a comprehensive review. Mater Rep Energy 2022;2:100080.

[35]

Ronchi RM, Arantes JT, Santos SF. Synthesis, structure, properties and applications of mxenes: current status and perspectives. Ceram Int 2019;45:18167-88.

[36]

Zhang T, Zhang L, Hou Y. MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2022;2:164-82.

[37]

Lei Y-J, Yan Z-C, Lai W-H, Chou S-L, Wang Y-X, Liu H-K, et al. Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications. Electrochem Energy Rev 2020;3:766-92.

[38]

Zhang C, Ma Y, Zhang X, Abdolhosseinzadeh S, Sheng H, Lan W, et al. Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater 2020;3:29-55.

[39]

Liu A, Liang X, Ren X, Guan W, Ma T. Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochem Energy Rev 2022;5:112-44.

[40]

An Y, Tian Y, Man Q, Shen H, Liu C, Xiong S, et al. Fluorine- and acid-free strategy toward scalable fabrication of two-dimensional mxenes for sodium-ion batteries. Nano Lett 2023;23:5217-26.

[41]

Wang F, Jin S, Du Y, Xia Q, Wang L, Zhou A. Preparation of Mo2CTx MXene as co-catalyst for H2 production by etching of pure/mixed HBr solution. Diamond Relat Mater 2023;136:109922.

[42]

Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341:1502-5.

[43]

Xie Y, Dall'Agnese Y, Naguib M, Gogotsi Y, Barsoum MW, Zhuang HL, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014;8:9606-15.

[44]

Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 2016;10:3334-41.

[45]

Bak S-M, Qiao R, Yang W, Lee S, Yu X, Anasori B, et al. Na-ion intercalation and charge storage mechanism in 2D vanadium carbide. Adv Energy Mater 2017;7:1700959.

[46]

Wang X, Shen X, Gao Y, Wang Z, Yu R, Chen L. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J Am Chem Soc 2015;137:2715-21.

[47]

Yu T, Zhao Z, Liu L, Zhang S, Xu H, Yang G. TiC3 monolayer with high specific capacity for sodium-ion batteries. J Am Chem Soc 2018;140:5962-8.

[48]

Naguib M, Adams RA, Zhao Y, Zemlyanov D, Varma A, Nanda J, et al. Electrochemical performance of MXenes as K-ion battery anodes. Chem Commun 2017;53:6883-6.

[49]

Fan K, Ying Y, Li X, Luo X, Huang H. Theoretical investigation of V3C2 MXene as prospective high-capacity anode material for metal-ion (Li, Na, K, and Ca) batteries. J Phys Chem C 2019;123:18207-14.

[50]

Guo X, Zhang W, Zhang J, Zhou D, Tang X, Xu X, et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 2020;14:3651-9.

[51]

Zhao Y, Zhang J, Guo X, Cao X, Wang S, Liu H, et al. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chem Soc Rev 2023;52:3215-64.

[52]

Kamysbayev V, Filatov AS, Hu H, Rui X, Lagunas F, Wang D, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020;369:979-83.

[53]

Bao W, Shuck CE, Zhang W, Guo X, Gogotsi Y, Wang G. Boosting performance of Na–S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019;13:11500-9.

[54]

Huang H, Cui J, Liu G, Bi R, Zhang L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019;13:3448-56.

[55]

Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Funct Mater 2019;29:1805946.

[56]

Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 2017;11:2459-69.

[57]

Li J, Yan D, Hou S, Li Y, Lu T, Yao Y, et al. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J Mater Chem A 2018;6:1234-43.

[58]

Tang X, Zhou D, Li P, Guo X, Sun B, Liu H, et al. MXene-based dendrite-free potassium metal batteries. Adv Mater 2020;32:1906739.

[59]

Fang Y, Lian R, Li H, Zhang Y, Gong Z, Zhu K, et al. Induction of planar sodium growth on mxene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes. ACS Nano 2020;14:8744-53.

[60]

Zhang F, Guo X, Xiong P, Zhang J, Song J, Yan K, et al. Interface engineering of MXene composite separator for high-performance Li–Se and Na–Se batteries. Adv Energy Mater 2020;10:2000446.

[61]

Huang P, Zhang S, Ying H, Zhang Z, Han W. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem Eng J 2021;417:129161.

[62]

Luo J, Lu X, Matios E, Wang C, Wang H, Zhang Y, et al. Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett 2020;20:7700-8.

[63]

Yang Q, Yang T, Gao W, Qi Y, Guo B, Zhong W, et al. An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na–S batteries. Inorg Chem Front 2020;7:4396-403.

[64]

Chen H, Zhang T, Wei C, Wang J, Niu X. First-principle study of Ti2XS2 (X = C/N) MXenes as high capacity anodes for rechargeable potassium-ion batteries. Appl Surf Sci 2021;546:149096.

[65]

Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020;6:616-30.

[66]

Yang C, Tang Y, Tian Y, Luo Y, Faraz Ud Din M, Yin X, et al. Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv Energy Mater 2018;8:1802087.

[67]

Zhang J, Zhao Y, Guo X, Chen C, Dong C-L, Liu R-S, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 2018;1:985-92.

[68]

Zhang L, Wang Z, Chen W, Yuan R, Zhan K, Zhu M, et al. Fe3O4 nanoplates anchored on Ti3C2Tx MXene with enhanced pseudocapacitive and electrocatalytic properties. Nanoscale 2021;13:15343-51.

[69]

Wang Y, Gu F, Cao L, Fan L, Hou T, Zhu Q, et al. TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries. Int J Hydrogen Energy 2022;47:20894-904.

[70]

Zhang X, Ni Z, Bai X, Shen H, Wang Z, Wei C, et al. Hierarchical porous N-doped carbon encapsulated fluorine-free MXene with tunable coordination chemistry by one-pot etching strategy for lithium–sulfur batteries. Adv Energy Mater 2023;13:2301349.

[71]

Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 2013;4:1716.

[72]

Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum MW. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem Mater 2016;28:3507-14.

[73]

Wu Y, Nie P, Wang J, Dou H, Zhang X. Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl Mater Interfaces 2017;9:39610-7.

[74]

Luo J, Zheng J, Nai J, Jin C, Yuan H, Sheng O, et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv Funct Mater 2019;29:1808107.

[75]

Zhang S, Ying H, Huang P, Wang J, Zhang Z, Zhang Z, et al. Ultrafine Sb pillared few-layered Ti3C2Tx MXenes for advanced sodium storage. ACS Appl Energy Mater 2021;4:9806-15.

[76]

Zhao S, Liu Z, Xie G, Guo X, Guo Z, Song F, et al. Achieving high-performance 3D K+-pre-intercalated Ti3C2Tx MXene for potassium-ion hybrid capacitors via regulating electrolyte solvation structure. Angew Chem Int Ed 2021;60:26246-53.

[77]

Lian P, Dong Y, Wu Z-S, Zheng S, Wang X, Sen W, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017;40:1-8.

[78]

Dong Y, Wu Z-S, Zheng S, Wang X, Qin J, Wang S, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 2017;11:4792-800.

[79]

Natu V, Clites M, Pomerantseva E, Barsoum MW. Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater Res Lett 2018;6:230-5.

[80]

Zhao D, Clites M, Ying G, Kota S, Wang J, Natu V, et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem Commun 2018;54:4533-6.

[81]

Xie X, Kretschmer K, Anasori B, Sun B, Wang G, Gogotsi Y. Porous Ti3C2Txx MXene for ultrahigh-rate sodium-ion storage with long cycle life. ACS Appl Nano Mater 2018;1:505-11.

[82]

Liu Y-T, Zhang P, Sun N, Anasori B, Zhu Q-Z, Liu H, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv Mater 2018;30:1707334.

[83]

Yang C, Liu Y, Sun X, Zhang Y, Hou L, Zhang Q, et al. In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries. Electrochim Acta 2018;271:165-72.

[84]

Huang P, Ying H, Zhang S, Zhang Z, Han W-Q. In situ fabrication of MXene/CuS hybrids with interfacial covalent bonding via lewis acidic etching route for efficient sodium storage. J Mater Chem A 2022;10:22135-44.

[85]

Zhao R, Qian Z, Liu Z, Zhao D, Hui X, Jiang G, et al. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy 2019;65:104037.

[86]

Bao W, Wang R, Qian C, Zhang Z, Wu R, Zhang Y, et al. Porous heteroatom-doped Ti3C2Tx MXene microspheres enable strong adsorption of sodium polysulfides for long-life room-temperature sodium–sulfur batteries. ACS Nano 2021;15:16207-17.

[87]

Sun N, Zhu Q, Anasori B, Zhang P, Liu H, Gogotsi Y, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater 2019;29:1906282.

[88]

Zhao Q, Zhu Q, Miao J, Zhang P, Xu B. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale 2019;11:8442-8.

[89]

Yang Z, Peng C, Meng R, Zu L, Feng Y, Chen B, et al. Hybrid anatase/rutile nanodots-embedded covalent organic frameworks with complementary polysulfide adsorption for high-performance lithium–sulfur batteries. ACS Cent Sci 2019;5:1876-83.

[90]

Li P, Lv H, Li Z, Meng X, Lin Z, Wang R, et al. The electrostatic attraction and catalytic effect enabled by ionic–covalent organic nanosheets on mxene for separator modification of lithium–sulfur batteries. Adv Mater 2021;33:2007803.

[91]

Yin L, Xu G, Nie P, Dou H, Zhang X. MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem Eng J 2018;352:695-703.

[92]

Zhou D, Tang X, Guo X, Li P, Shanmukaraj D, Liu H, et al. Polyolefin-based janus separator for rechargeable sodium batteries. Angew Chem Int Ed 2020;59:16725-34.

[93]

Guo X, Gao H, Wang S, Yang G, Zhang X, Zhang J, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance potassium-ion batteries. Nano Lett 2022;22:1225-32.

[94]

Cao J, Wang L, Li D, Yuan Z, Xu H, Li J, et al. Ti3C2Tx MXene conductive layers supported bio-derived Fex-1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv Mater 2021;33:2101535.

[95]

Ma H, Li J, Yang J, Wang N, Liu Z, Wang T, et al. Bismuth nanoparticles anchored on Ti3C2Tx MXene nanosheets for high-performance sodium-ion batteries. Chem Asian J 2021;16:3774-80.

[96]

Sajjad M, Cheng F, Lu W. Research progress in transition metal chalcogenide based anodes for K-ion hybrid capacitor applications: a mini-review. RSC Adv 2021;11:25450-60.

[97]

Guo X, Xie X, Choi S, Zhao Y, Liu H, Wang C, et al. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J Mater Chem A 2017;5:12445-52.

[98]

Wu Y, Nie P, Jiang J, Ding B, Dou H, Zhang X. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries. Chemelectrochem 2017;4:1560-5.

[99]

Cao Y, Chen H, Shen Y, Chen M, Zhang Y, Zhang L, et al. SnS2 nanosheets anchored on nitrogen and sulfur Co-doped MXene sheets for high-performance potassium-ion batteries. ACS Appl Mater Interfaces 2021;13:17668-76.

Journal of Materiomics
Pages 253-268
Cite this article:
Huang Z, Farahmandjou M, Marlton F, et al. Surface and structure engineering of MXenes for rechargeable batteries beyond lithium. Journal of Materiomics, 2024, 10(1): 253-268. https://doi.org/10.1016/j.jmat.2023.10.001

148

Views

4

Crossref

6

Web of Science

6

Scopus

Altmetrics

Received: 01 August 2023
Revised: 27 September 2023
Accepted: 08 October 2023
Published: 29 October 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return