With the rapid growth in renewable energy, researchers worldwide are trying to expand energy storage technologies. The development of beyond-lithium battery technologies has accelerated in recent years, amid concerns regarding the sustainability of battery materials. However, the absence of suitable high-performance materials has hampered the development of the next-generation battery systems. MXenes, a family of 2D transition metal carbides and/or nitrides, have drawn significant attention recently for electrochemical energy storage, owing to their unique physical and chemical properties. The extraordinary electronic conductivity, compositional diversity, expandable crystal structure, superior hydrophilicity, and rich surface chemistries make MXenes promising materials for electrode and other components in rechargeable batteries. This report especially focuses on the recent MXene applications as novel electrode materials and functional separator modifiers in rechargeable batteries beyond lithium. In particular, we highlight the recent advances of surface and structure engineering strategies for improving the electrochemical performance of the MXene-based materials, including surface termination modifications, heteroatom doping strategies, surface coating, interlayer space changes, nanostructure engineering, and heterostructures and secondary materials engineering. Finally, perspectives for building future sustainable rechargeable batteries with MXenes and MXene-based composite materials are presented based upon material design and a fundamental understanding of the reaction mechanisms.
- Article type
- Year
- Co-author
Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity (~ 1166 mAh·g−1), low reduction potential (−2.71 V compared to standard hydrogen electrodes), and low cost. However, the unstable solid electrolyte interphase, uncontrolled dendrite growth, and inevitable volume expansion hinder the practical application of sodium metal anodes. At present, many strategies have been developed to achieve stable sodium metal anodes. Here, we systematically summarize the latest strategies adopted in interface engineering, current collector design, and the emerging methods to improve the reaction kinetics of sodium deposition processes. First, the strategies of constructing protective layers are reviewed, including inorganic, organic, and mixed protective layers through electrolyte additives or pretreatments. Then, the classification of metal-based, carbon-based, and composite porous frames is discussed, including their function in reducing local deposition current density and the effect of introducing sodiophilic sites. Third, the recent progress of alloys, nanoparticles, and single atoms in improving Na deposition kinetics is systematically reviewed. Finally, the future research direction and the prospect of high-performance sodium metal batteries are proposed.