AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

MXenes

School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

References

[1]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248–53.

[2]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021;372:eabf1581.

[3]

Huang P, Han W-Q. Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Lett 2023;15:68.

[4]

Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 2020;19:894–9.

[5]

Wang D, Zhou C, Filatov AS, Cho W, Lagunas F, Wang M, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023;379:1242–7.

[6]

Ding H, Li Y, Li M, Chen K, Liang K, Chen G, et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 2023;379:1130–5.

[7]

Liu X, Li Y, Ding H, Chen L, Du S, Chai Z, et al. Topotactic transition of Ti4AlN3 MAX phase in Lewis acid molten salt. J Materiomics 2023;9:1032–8.

[8]

Zhou Z, Wei L, Yi Y, Feng S, Zhan Z, Tian D, et al. Shear stress-induced delamination method for the mass production of Ti3C2T MXene nanosheets. J Materiomics 2023;9:1151–9.

[9]

Li G, Lian S, Wang J, Xie G, Zhang N, Xie X. Surface chemistry engineering and the applications of MXenes. J Materiomics 2023;9:1160–84.

[10]

Lu Z, He X, Yin H, Zhang J, Song G, Zheng Y, et al. Theoretical screening, intrinsic brittleness and thermal properties of the S-containing MAX carbides and borides. J Materiomics 2023;9:1056–66.

[11]

Yin H, He X, Zhang J, Song G, Zheng Y, Bai Y. DFT-assisting discovery and characterization of a hexagonal MAB-phase V3PB4. J Materiomics 2023;9:1141–50.

[12]

Hu J, Yang S, Pei Y, Wang X, Liao Y, Li S, et al. Perspective on powder technology for all-solid-state batteries: how to pair sulfide electrolyte with high-voltage cathode. Particuology 2024;86:55–66.

[13]

Xiao Z, Xiao X, Kong LB, Dong H, Li X, Sun X, et al. MXenes and MXene-based composites for energy conversion and storage applications. J Materiomics 2023;9:1067–112.

[14]

Jia J, Zhu Y, Das P, Ma J, Wang S, Zhu G, et al. Advancing MXene-based integrated microsystems with micro-supercapacitors and/or sensors: rational design, key progress, and challenging perspectives. J Materiomics 2023;9:1242–62.

[15]

Akhter R, Maktedar SS. MXenes: a comprehensive review of synthesis, properties, and progress in supercapacitor applications. J Materiomics 2023;9:1196–241.

[16]

Huang Z, Farahmandjou M, Marlton F, Guo X, Gao H, Sun B, et al. Surface and structure engineering of MXenes for rechargeable batteries beyond lithium. J Materiomics 2023;10(1):253–68. https://doi.org/10.1016/j.jmat.2023.10.001.

[17]

Gu Z, Li J, Song P, Wang Y, Yang J, Wang T, et al. Three-dimensional crosslinked nanoarchitectonics of CoP@NC anchored on Ti3C2T with high ionic diffusion and enhanced sodium storage performance. J Materiomics 2023;9:1185–95.

[18]

Wang Y, Jin L, Hua S, Zhao Z, Xiao Z, Qu C, et al. Hierarchically nanostructured nitrogen-doped porous carbon multi-layer confining Fe particles for high performance hydrogen evolution. J Materiomics 2023;9:1113–21.

[19]

Wu Y, Wang L, Chai Z, Shi W. Heterostructure engineering of MoS2/Mo2CT nanoarray via molten salt synthesis for enhanced hydrogen evolution reaction. J Materiomics 2023;9:1122–8.

[20]

Wang T, Gu W, Yu L, Guo X, Yang J, Sun X, et al. MXene: an efficient hemoperfusion sorbent for the removal of uremic toxins. J Materiomics 2023;9:1129–40.

Journal of Materiomics
Pages 520-522
Cite this article:
Han W, Huang Q, Wang G. MXenes. Journal of Materiomics, 2024, 10(2): 520-522. https://doi.org/10.1016/j.jmat.2023.12.001

140

Views

3

Crossref

4

Web of Science

4

Scopus

Altmetrics

Published: 22 December 2023
© 2023 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return