Single-phase multiferroics (MFs) exhibiting ferroelectricity and ferromagnetism and the strong magnetoelectric (ME) coupling effect at room temperature are seen as key to the development of the next-generation of spintronic devices, multi-state memories, logic devices and sensors. Herein, the single-tetragonal phase (1–x) (Sr0·3Bi0·35Na0·329Li0.021)TiO3-xBiFeO3 (x = 0.2 or 0.4) system was designed to study the intrinsic ME coupling effect at room temperature and high frequencies. The polarization arises from the cooperative displacement of both Fe3+ and Ti4+ relative to the oxygen sublattice in the tetragonally distorted perovskite structure, and the magnetization stems from indirect exchange magnetic interaction between adjacent iron ions. A switchable voltage-controlled magnetization was confirmed by a change of the coercive magnetic field, Hc, and remnant magnetization, Mr, in the x = 0.4 component subjected to an external electric field at room temperature and was possibly attributed to a strain-mediated ME coupling effect. In addition, resonance behaviours of the complex magnetic permeability and complex dielectric permittivity in the GHz band indicate that this ME effect is intrinsic in nature and could broaden the applications of multiferroics to devices operating at microwave frequencies.
Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater 2016;1:16046.
Cheong SW, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 2007;6:13-20.
Khomskii D. Classifying multiferroics: mechanisms and effects. Physics 2009;2:20.
Dong S, Liu JM, Cheong SW, Ren ZF. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys 2015;64:519-626.
Schmid H. On a magnetoelectric classification of materials. Int J Magn 1973;4:337-61.
Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, et al. Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 2009;19:1826-31.
Lou J, Reed D, Pettiford C, Liu M, Han P, Dong S, et al. Giant microwave tunability in FeGaB/lead magnesium niobate-lead titanate multiferroic composites. Appl Phys Lett 2008;92:262502.
Trassin M. Low energy consumption spintronics using multiferroic heterostructures. J Phys Condens Matter 2015;28:033001.
Baek SH, Jang HW, Folkman CM, Li YL, Winchester B, Zhang JX, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater 2010;9:309-14.
Wang Y, Zhu H, Luo H, Li J, Huan Y, Zhao Y, et al. Tunable antiferroelectric-like polarization behavior and enhanced energy storage characteristics in symmetric BaTiO3/BiFeO3/BaTiO3 heterostructure. J Materiomics 2024;10:1290-8.
Xing Z, Li J, Viehland D. Modeling and the signal-to-noise ratio research of magnetoelectric sensors at low frequency. Appl Phys Lett 2007;91:142905.
Hu JM, Li Z, Chen LQ, Nan CW. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat Commun 2011;2:553.
Gupta R, Kotnala RK. A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J Mater Sci 2022;57:12710-37.
Nan C. Research progress and future directions of multiferroic materials. Sci Sin Technol 2015;45:339-57.
Katsura H, Nagaosa N, Balatsky AV. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 2005;95:057205.
Zhang QM, Li Q, Gao RL, Zhou WP, Wang LY, Yang YT, et al. The electric field manipulation of magnetization in La1−xSrxCoO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructures. Appl Phys Lett 2014;104:142409.
Zhao X, Hu Z, Wu J, Fang T, Li Y, Cheng Y, et al. Vector analysis of electric-field-induced antiparallel magnetic domain evolution in ferromagnetic/ferroelectric heterostructures. J Adv Ceram 2021;10:1273-81.
Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003;299:1719-22.
Shi H, Li F, Yang X, Long M, Shan L, Wang C, et al. High depolarization temperature and superior piezoelectric performance with complex structural evolution in BiFeO3PbTiO3–(Sr0.7Bi0.2□0.1)TiO3 systems. J Materiomics 2022;8:1260-8.
Bai H, Li J, Hong Y, Zhou Z. Enhanced ferroelectricity and magnetism of quenched (1-x)BiFeO3-xBaTiO3 ceramics. J Adv Ceram 2020;9:511-6.
Zhou Z, Sun W, Liao Z, Ning S, Zhu J, Li J-F. Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films. J Materiomics 2018;4:27-34.
Liang Y, Jiang D, Chai Y, Wang Y, Chen H, Ma J, et al. Observation of magnon spin transport in BiFeO3 thin films. Adv Funct Mater 2023:2308944.
Zhao G, Pan C, Dong W, Tong P, Yang J, Zhu X, et al. Lattice-mediated room temperature magnetoelectric effect in (1-y)BiFe1-xCrxO3-yBaTi1-xMnxO3 solid solutions. J Am Ceram Soc 2024;107:2348-59.
Li QT, Liu L, Zhu XL, Liu XQ, Chen XM. Effects of La/Ho co-substitution on structure and multiferroic characteristics of BiFeO3 ceramics. J Appl Phys 2023;134:195102.
Ni B, Bao A, Gu Y, Zhang X, Qi X. High-entropy enhanced room-temperature ferroelectricity in rare-earth orthoferrites. J Adv Ceram 2023;12:724-33.
Murtaza T, Salmani IA, Ali J, Khan MS. Structural, electrical and magnetic study of multiferroic Bi1-xNdxFeO3. J Mater Sci Mater Electron 2017;29:5110-5.
Varshney D, Kumar A, Verma K. Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J Alloys Compd 2011;509:8421-6.
Zhang Y-J, Zhang H-G, Yin J-H, Zhang H-W, Chen J-L, Wang W-Q, et al. Structural and magnetic properties in Bi1−xRxFeO3 (x=0–1, R=La, Nd, Sm, Eu and Tb) polycrystalline ceramics. J Magn Magn Mater 2010;322:2251-5.
Khomchenko VA, Kiselev DA, Selezneva EK, Vieira JM, Lopes AML, Pogorelov YG, et al. Weak ferromagnetism in diamagnetically-doped Bi1−xAxFeO3 (A=Ca, Sr, Pb, Ba) multiferroics. Mater Lett 2008;62:1927-9.
Yang Z, Li Y, Wang B, Pan J, Kleppe AK, Hall DA. Acceptor doping and actuation mechanisms in Sr-doped BiFeO3-BaTiO3 ceramics. J Materiomics 2024;10:57-69.
Zhou YN, Gao TT, Chen J, Liu XQ, Chen XM. Morphotropic phase boundary (MPB) and enhanced multiferroic characteristics of Bi1-x(Ba0.75Ca0.25)xFe1-xTixO3 ceramics (0.25 ≤ x ≤ 0.35). J Alloys Compd 2020;819:153031.
Reetu Agarwal A, Sanghi S, Ashima. Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J Appl Phys 2011;110:073909.
Liu H, Yang X. Structural, dielectric, and magnetic properties of BiFeO3-SrTiO3 solid solution ceramics. Ferroelectrics 2016;500:310-7.
Zhao W, Zuo R, Fu J, Wang X, Li L, Qi H, et al. Enhanced rhombohedral domain switching and low field driven high electromechanical strain response in BiFeO3-based relaxor ferroelectric ceramics. J Eur Ceram Soc 2016;36:2453-60.
Ramana EV, Mahajan A, Graça MPF, Srinivas A, Valente MA. Ferroelectric and magnetic properties of magnetoelectric (Na0.5Bi0.5)TiO3–BiFeO3 synthesized by acetic acid assisted sol–gel method. J Eur Ceram Soc 2014;34:4201-11.
Patel SK, Karaba CT, Robertson DD, Chang J, Fitzell K, Salamat CZ, et al. Increased magnetoelectric coupling in porous nanocomposites of CoFe2O4 and BiFeO3 with residual porosity for switchable magnetic devices. ACS Appl Nano Mater 2023;6:4141-50.
Yao M, Cheng L, Hao S, Salmanov S, Otonicar M, Mazaleyrat F, et al. Great multiferroic properties in BiFeO3/BaTiO3 system with composite-like structure. Appl Phys Lett 2023;122:152904.
Wu J, Mahajan A, Riekehr L, Zhang H, Yang B, Meng N, et al. Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nano Energy 2018;50:723-32.
Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 2001;34:210-3.
Larson AC, Von Dreele R. Program GSAS, general structure analysis system. Los Alamos: Los Alamos National Laboratories; 1994.
Zhang H, Krynski M, Fortes AD, Saunders TG, Palma M, Hao Y, et al. Origin of polarization in bismuth sodium titanate-based ceramics. J Am Chem Soc 2024. In press.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671-5.
Jain V, Biesinger MC, Linford MR. The Gaussian-Lorentzian sum, product, and convolution (Voigt) functions in the Context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Appl Surf Sci 2018;447:548-53.
Viola G, Saunders T, Wei X, Chong KB, Luo H, Reece MJ, et al. Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics. J Adv Dielectr 2013;03:1350007.
Liu Y, Chen L, Tan CY, Liu HJ, Ong CK. Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation. Rev Sci Instrum 2005;76:063911.
Parija B, Badapanda T, Sahoo PK, Kar M, Kumar P, Panigrahi S. Structural and electromechanical study of Bi0. 5Na0. 5TiO3-BaTiO3 solid-solutions. Process Appl Ceram 2013;7:73-80.
Shannon RT, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Crystallogr B Struct Crystallogr Cryst Chem 1969;25:925-46.
Hu Z, Stenning GBG, Koval V, Wu J, Yang B, Leavesley A, et al. Terahertz faraday rotation of SrFe12O19 hexaferrites enhanced by Nb doping. ACS Appl Mater Interfaces 2022;14:46738-47.
Hu Z, Koval V, Zhang H, Chen K, Yue Y, Zhang D, et al. Enhanced piezoelectricity in Na and Ce co-doped CaBi4Ti4O15 ceramics for high-temperature applications. J Adv Ceram 2023;12:1331-44.
Viola G, Mckinnon R, Koval V, Adomkevicius A, Dunn S, Yan H. Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J Phys Chem C 2014;118:8564-70.
Lin Y, Nie H, Xie M, Cao F, Peng P, Wang G. Ultrahigh polarization Bi0.5Na0.5TiO3-based relaxor ceramics for force-electric conversion. Appl Phys Lett 2023;123:083903.
Lebeugle D, Colson D, Forget A, Viret M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett 2007;91:022907.
Viola G, Tian Y, Yu C, Tan Y, Koval V, Wei X, et al. Electric field-induced transformations in bismuth sodium titanate-based materials. Prog Mater Sci 2021;122:100837.
Wu J, Zhang H, Huang C-H, Tseng C-W, Meng N, Koval V, et al. Ultrahigh field-induced strain in lead-free ceramics. Nano Energy 2020;76:105037.
Guo H, Liu X, Xue F, Chen L-Q, Hong W, Tan X. Disrupting long-range polar order with an electric field. Phys Rev B 2016;93:174114.
Lin D, Kwok KW, Chan HLW. Structure and electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics. Solid State Ionics 2008;178:1930-7.
Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D. Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 2009;105:094102.
Wang K, Hussain A, Jo W, Rödel J. Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics. J Am Ceram Soc 2012;95:2241-7.
Viola G, Saunders T, Wei X, Chong K, Luo H, Reece M, et al. Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics. J Adv Dielectr 2013;3:1350007.
Narayan B, Malhotra JS, Pandey R, Yaddanapudi K, Nukala P, Dkhil B, et al. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat Mater 2018;17:427-31.
Ren X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 2004;3:91-4.
Huangfu G, Zeng K, Wang B, Wang J, Fu Z, Xu F, et al. Giant electric field–induced strain in lead-free piezoceramics. Science 2022;378:1125-30.
Carvalho MD, Henriques F, Ferreira LP, Godinho M, Cruz MM. Iron oxide nanoparticles: the Influence of synthesis method and size on composition and magnetic properties. J Solid State Chem 2013;201:144-52.
Luo W, Nagel SR, Rosenbaum T, Rosensweig R. Dipole interactions with random anisotropy in a frozen ferrofluid. Phys Rev Lett 1991;67:2721.
Hu Z, Koval V, Yue Y, Zhang M, Jia C, Abrahams I, et al. Structural evolution and coexistence of ferroelectricity and antiferromagnetism in Fe, Nb co-doped BaTiO3 ceramics. J Eur Ceram Soc 2023:2460-8.
Vaz C a F. Electric field control of magnetism in multiferroic heterostructures. J Phys Condens Matter 2012;24:333201.
Jia C, Wang F, Jiang C, Berakdar J, Xue D. Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics. Sci Rep 2015;5:11111.
Zhang M, Koval V, Shi Y, Yue Y, Jia C, Wu J, et al. Magnetoelectric coupling at microwave frequencies observed in bismuth ferrite-based multiferroics at room temperature. J Mater Sci Technol 2023;137:100-3.
Zhang M, Zhang H, Jiang Q, Gao F, Chen R, Zhang D, et al. Terahertz characterization of lead-free dielectrics for different applications. ACS Appl Mater Interfaces 2021;13:53492-503.