AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

CuO–TiO2 based self-powered broad band photodetector

Chiranjib Ghosha,1Arka Deya,1( )Iman BiswasaRajeev Kumar GuptabVikram Singh YadavcAshish YadavdNeha YadavdHongyu ZhengdMohamed HeninieAniruddha Mondala( )
Department of Physics, National Institute of Technology Durgapur, West Bengal, India
Department of Physics, University of Petroleum & Energy Studies Dehradun, Uttarakhand, India
Babasaheb Bhimrao Ambedkar University, Lucknow, 226031, India
Center for Advanced Laser Manufacturing (CALM), Shandong University of Technology, Zibo, 255000, PR China
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

1 Both the authors C.G and A.D has equal contribution.

Show Author Information

Abstract

An efficient room-temperature self-powered, broadband (300 ​nm–1100 nm) photodetector based on a CuO–TiO2/TiO2/p-Si(100) heterostructure is demonstrated. The CuO–TiO2 nanocomposites were grown in a two-zone horizontal tube furnace on a 40 ​nm TiO2 thin film deposited on a p-type Si(100) substrate. The CuO–TiO2/TiO2/p-Si(100) devices exhibited excellent rectification characteristics under dark and individual photo-illumination conditions. The devices showed remarkable photo-response under broadband (300–1100 ​nm) light illumination at zero bias voltage, indicating the achievement of highly sensitive self-powered photodetectors at visible and near-infrared light illuminations. The maximum response of the devices is observed at 300 ​nm for an illumination power of 10 ​W. The response and recovery times were calculated as 86 ​ms and 78 ​ms, respectively. Moreover, under a small bias, the devices showed a prompt binary response by altering the current from positive to negative under illumination conditions. The main reason behind this binary response is the low turn-on voltage and photovoltaic characteristics of the devices. Under illumination conditions, the generation of photocurrent is due to the separation of photogenerated electron-hole pairs within the built-in electric field at the CuO–TiO2/TiO2 interface. These characteristics make the CuO–TiO2/TiO2 broadband photodetectors suitable for applications that require high response speeds and self-sufficient functionality.

References

[1]

P. Lin, X. Yan, Z. Zhang, Y. Shen, Y. Zhao, Z. Bai, Y. Zhang, ACS Appl. Mater. Interfaces 5 (2013) 3671–3676, https://doi.org/10.1021/am4008775.

[2]

X. Lin, H. Deng, Y. Jia, Z. Wu, Y. Xia, X. Wang, S. Chen, Y. Cheng, Q. Zheng, Y. Lai, S. Cheng, ACS Appl. Mater. Interfaces 14 (2022) 12385–12394, https://doi.org/10.1021/acsami.1c25256.

[3]

K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam, M. Wang, A. Ren, K.L. Choy, I.P. Parkin, Z. Guo, J. Wu, Adv. Mater. 32 (2020) 2000004, https://doi.org/10.1002/adma.202000004.

[4]

O. Game, U. Singh, T. Kumari, A. Banpurkar, S. Ogale, Nanoscale 6 (2014) 503–513, https://doi.org/10.1039/C3NR04727J.

[5]

L. Hu, L. Zhu, H. He, Y. Guo, G. Pan, J. Jiang, Y. Jin, L. Sun, Z. Ye, Nanoscale 5 (2013) 9577–9581, https://doi.org/10.1039/C3NR01979A.

[6]

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, Z.L. Wang, ACS Nano 10 (2016) 1572–1579, https://doi.org/10.1021/acsnano.5b07217.

[7]

Q. Zheng, M. Peng, Z. Liu, S. Li, R. Han, H. Ouyang, Y. Fan, C. Pan, W. Hu, J. Zhal, Z. Li, Z.L. Wang, Sci. Adv. 7 (2021) eabe7738.

[8]
P. Guo, M. Jia, D. Guo, Z. L. Wang, J. Zhai, https://doi.org/10.1016/j.matt.2022.11.022.
[9]

X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie, Small 9 (2013) 2005–2011, https://doi.org/10.1002/smll.201202408.

[10]

G. Konstantatos, E.H. Sargent, Nat. Nanotechnol. 5 (2010) 391–400, https://doi.org/10.1038/nnano.2010.78.

[11]

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.T. Lee, Adv. Funct. Mater. 25 (2015) 2910–2919, https://doi.org/10.1002/adfm.201500216.

[12]

W. Ouyang, F. Teng, X. Fang, Adv. Funct. Mater. 28 (2018) 1707178, https://doi.org/10.1002/adfm.201707178.

[13]

P. Yu, K. Hu, H. Chen, L. Zheng, X. Fang, Adv. Funct. Mater. 27 (2017) 1703166, https://doi.org/10.1002/adfm.201703166.

[14]

J. Chen, J. Xu, S. Shi, R. Cao, D. Liu, Y. Bu, P. Yang, J. Xu, X. Zhang, L. Li, ACS Appl. Mater. Interfaces 12 (2020) 23145–23154, https://doi.org/10.1021/acsami.0c05247.

[15]

A. Srivastava, R. Singh, S. Jit, S. Tripathi, IEEE Electron. Device Lett. 42 (2021) 875–878, https://doi.org/10.1109/LED.2021.3075345.

[16]

L. Sun, C. Wang, T. Ji, J. Wang, G.C. Yi, X. Chen, RSC Adv. 7 (2017) 51744–51749, https://doi.org/10.1039/C7RA10439A.

[17]

Z. Zhou, X. Li, F. Zhao, C. Wang, M. Zhang, S. He, Y. Zhang, D. Zhang, M. Xu, L. Zhang, Opt. Mater. Express 12 (2022) 392–402, https://doi.org/10.1364/OME.448435.

[18]

H. Hamad, M.M. Elsenety, W. Sadik, A.G. El-Demerdash, A. Nashed, A. Mostafa, S. Elyamny, Sci. Rep. 12 (2022) 1–20, https://doi.org/10.1038/s41598-022-05981-7.

[19]

M. Diab, B. Moshofsky, I. Jen-La Plante, T. Mokari, J. Mater. Chem. 21 (31) (2011) 11626–11630, https://doi.org/10.1039/C1JM10638D.

[20]

R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22 (2012) 3326–3370, https://doi.org/10.1002/adfm.201201008.

[21]

E.P. Etape, L.J. Ngolui, J. Foba-Tendo, D.M. Yufanyi, B.V. Namondo, J. Appl. Chem. 2017 (2017) 1–10, https://doi.org/10.1155/2017/4518654.

[22]

C. Yang, X. Su, J. Wang, X. Cao, S. Wang, L. Zhang, Sensor. Actuator. B Chem. 185 (2013) 159–165, https://doi.org/10.1016/j.snb.2013.04.100.

[23]

N. Scotti, D. Monticelli, F. Zaccheria, Inorg. Chim. Acta. 380 (2012) 194–200, https://doi.org/10.1016/j.ica.2011.10.001.

[24]

Y. Zhao, X. Song, Z. Yin, Q. Song, J. Colloid Interface Sci. 396 (2013) 29–38, https://doi.org/10.1016/j.jcis.2012.12.071.

[25]

M.S. Hassan, T. Amna, O.B. Yang, M.H. El-Newehy, S.S. Al-Deyab, M.S. Khil, Colloids Surf. B Biointerfaces 97 (2012) 201–206, https://doi.org/10.1016/j.colsurfb.2012.04.032.

[26]

O. Waser, M. Hess, A. Güntner, P. Novák, S.E. Pratsinis, J. Power Sources 241 (2013) 415–422, https://doi.org/10.1016/j.jpowsour.2013.04.147.

[27]

D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang, W. Sui, H. Shi, D. Xue, Nanoscale Res. Lett. 5 (2010) 769–772, https://doi.org/10.1007/s11671-010-9555-8.

[28]

T. Ahmad, R. Chopra, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Solid State Sci. 7 (2005) 891–895, https://doi.org/10.1016/j.solidstatesciences.2004.11.029.

[29]

A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 88 (2013) 347–357, https://doi.org/10.1016/j.electacta.2012.10.088.

[30]

Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16 (2004) 88, https://doi.org/10.1088/0957-4484/16/1/018.

[31]

C. Ghosh, S.M.M. Dhar Dwivedi, A. Ghosh, A. Dalal, A. Mondal, Appl. Phys. A 125 (2019) 1–9, https://doi.org/10.1007/s00339-019-3108-5.

[32]

Z. Li, Z. Li, C. Zuo, X. Fang, Adv. Mater. 34 (2022) 2109083, https://doi.org/10.1002/adma.202109083.

[33]

Z. Li, T. Yan, X. Fang, Nat. Rev. Mater. 8 (2023) 587–603, https://doi.org/10.1038/s41578-023-00583-9.

[34]

C.H. Ashok, V.K. Rao, C.H. Shilpa Chakra, J. Nanomater. Mol. Nanotech. 5 (2016) 12–15, https://doi.org/10.4172/2324-8777.1000178.

[35]

L. Dong, H. Chu, X. Wang, Y. Li, S. Zhao, D. Li, Nanophotonics 10 (2021) 1541–1551, https://doi.org/10.1515/nanoph-2020-0649.

[36]

M.S.P. Francisco, V.R. Mastelaro, Chem. Mater. 14 (2002) 2514–2518, https://doi.org/10.1021/cm011520b.

[37]

Z.K. Heiba, M.B. Mohamed, A.J. Badawi, Inorg. Organomet. Polym. Mater. (2022) 1–10, https://doi.org/10.1007/s10904-022-02312-1.

[38]

Z. Liu, C. Zhou, Prog. Nat. Sci.: Mater. Int. 25 (2015) 334–341, https://doi.org/10.1016/j.pnsc.2015.07.005.

[39]

J. Banas-Gac, M. Radecka, A. Czapla, E. Kusior, K. Zakrzewska, Appl. Surf. Sci. 616 (2023) 156394, https://doi.org/10.1016/j.apsusc.2023.156394.

[40]

J.A. Thornton, J. Vac. Sci. Technol. A 11 (1974) 666, https://doi.org/10.1116/1.1312732.

[41]

S. Mukherjee, D. Gall, Thin Solid Films 527 (2013) 158–163, https://doi.org/10.1016/j.tsf.2012.11.007.

[42]

K.M.R. Karim, M.A.P. Jebi, H.R. Ong, H. Abdullah, M. Tarek, C.K. Cheng, M.M.R. Khan, In Natl. Conf. Postgrad. Res. (2018) 103–111.

[43]

K. Osako, K. Matsuzaki, H. Hosono, G. Yin, D. Atarashi, E. Sakai, T. Susaki, M. Miyauchi, Apl. Mater. 3 (2015) 104409, https://doi.org/10.1063/1.4926934.

[44]

N. Boutaleb, F.Z. Dahou, H. Djelad, L. Sabantina, I. Moulefera, A. Benyoucef, Polymers 14 (21) (2022) 4562, https://doi.org/10.3390/polym14214562.

[45]

A. Dey, S. Middya, R. Jana, M. Das, J. Datta, A. Layek, P.P. Ray, J. Mater. Sci. Mater. Electron. 27 (2016) 6325–6335, https://doi.org/10.1007/s10854-016-4567-5.

[46]

A. Dey, A. Layek, A. Roychowdhury, M. Das, J. Datta, S. Middya, D. Das, P.P. Ray, RSC Adv. 5 (2015) 36560–36567, https://doi.org/10.1039/C4RA16828C.

[47]

D. Wu, Y. Jiang, Y. Zhang, J. Li, Y. Yu, Y. Zhang, Z. Zhu, L. Wang, C. Wu, L. Luo, J. Jie, J. Mater. Chem. 22 (2012) 6206–6212, https://doi.org/10.1039/C2JM16632A.

[48]

S. Krishna, A. Sharma, N. Aggarwal, S. Husale, G. Gupta, Sol. Energy Mater. Sol. Cell. 172 (2017) 376–383, https://doi.org/10.1016/j.solmat.2017.08.017.

[49]

X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang, L. Su, S. He, C. Tang, P. Liu, H. Peng, X. Fang, Adv. Mater. 30 (2018) 1803165, https://doi.org/10.1002/adma.201803165.

[50]

H.T. Hsueh, S.J. Chang, W.Y. Weng, C.L. Hsu, T.J. Hsueh, F.Y. Hung, S.L. Wu, B.T. Dai, IEEE Trans. Nanotechnol. 11 (2012) 127–133, https://doi.org/10.1109/TNANO.2011.2159620.

[51]

W. Tian, C. Zhi, T. Zhai, X. Wang, M. Liao, S. Li, S. Chen, D. Golberg, Y. Bando, Nanoscale 4 (2012) 6318–6324, https://doi.org/10.1039/C2NR31791E.

[52]

B.J. Hansen, N. Kouklin, G. Lu, I.K. Lin, J. Chen, X. Zhang, J. Phys. Chem. C 114 (2010) 2440–2447, https://doi.org/10.1021/jp908850j.

[53]

S. Li, T. Yan, X. Liu, F. Cao, X. Fang, Adv. Funct. Mater. 33 (2023) 2214533, https://doi.org/10.1002/adfm.202214533.

[54]

C. Zuo, S. Cai, Z. Li, X. Fang, Nanotechnology 33 (10) (2022) 105202, https://doi.org/10.1088/1361-6528/ac3e35.

[55]

Z. Li, M.K. Joshi, J. Chen, Z. Zhang, Z. Li, X. Fang, Adv. Funct. Mater. 30 (2020) 2005291, https://doi.org/10.1002/adfm.202005291.

[56]

L. Zheng, K. Hu, F. Teng, X. Fang, Small 13 (2017) 1602448, https://doi.org/10.1002/smll.201602448.

[57]

T. Yan, S. Cai, Z. Hu, Z. Li, X.J. Fang, Phys. Chem. Lett. 12 (2021) 9912–9918, https://doi.org/10.1021/acs.jpclett.1c03090.

Nano Materials Science
Pages 345-354
Cite this article:
Ghosh C, Dey A, Biswas I, et al. CuO–TiO2 based self-powered broad band photodetector. Nano Materials Science, 2024, 6(3): 345-354. https://doi.org/10.1016/j.nanoms.2023.11.003

103

Views

1

Downloads

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 14 July 2023
Accepted: 07 November 2023
Published: 24 November 2023
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return