AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Paper | Open Access

Synthetic polymers: A review of applications in drilling fluids

Shadfar Davoodia( )Mohammed Al-ShargabiaDavid A. Woodb( )Valeriy S. RukavishnikovaKonstantin M. Minaeva
School of Earth Sciences & Engineering, Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russia
DWA Energy Limited, Lincoln, United Kingdom

Edited by Jia-Jia Fei

Show Author Information

Abstract

With the growth of deep drilling and the complexity of the well profile, the requirements for a more complete and efficient exploitation of productive formations increase, which increases the risk of various complications. Currently, reagents based on modified natural polymers (which are naturally occurring compounds) and synthetic polymers (SPs) which are polymeric compounds created industrially, are widely used to prevent emerging complications in the drilling process. However, compared to modified natural polymers, SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions. SPs provide substantial flexibility in their design. Moreover, their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids. They can be classified based on chemical ingredients, type of reaction, and their responses to heating. However, some of SPs, due to their structural characteristics, have a high cost, a poor temperature and salt resistance in drilling fluids, and degradation begins when the temperature reaches 130 ℃. These drawbacks prevent SP use in some medium and deep wells. Thus, this review addresses the historical development, the characteristics, manufacturing methods, classification, and the applications of SPs in drilling fluids. The contributions of SPs as additives to drilling fluids to enhance rheology, filtrate generation, carrying of cuttings, fluid lubricity, and clay/shale stability are explained in detail. The mechanisms, impacts, and advances achieved when SPs are added to drilling fluids are also described. The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed. Economic issues also impact the applications of SPs in drilling fluids. Consequently, the cost of the most relevant SPs, and the monomers used in their synthesis, are assessed. Environmental impacts of SPs when deployed in drilling fluids, and their manufacturing processes are identified, together with advances in SP-treatment methods aimed at reducing those impacts. Recommendations for required future research addressing SP property and performance gaps are provided.

References

 

Abbas, M.A., Zamir, A., Elraies, K.A., Mahmood, S.M., Rasool, M.H., 2021. A critical parametric review of polymers as shale inhibitors in water-based drilling fluids. J. Pet. Sci. Eng. 204, 108745. https://doi.org/10.1016/J.PETROL.2021.108745.

 

Abdelgawad, K.Z., Elzenary, M., Elkatatny, S., Mahmoud, M., Abdulraheem, A., Patil, S., 2019. New approach to evaluate the equivalent circulating density (ECD) using artificial intelligence techniques. J. Pet. Explor. Prod. Technol. 9, 1569–1578. https://doi.org/10.1007/S13202-018-0572-Y/FIGURES/11.

 

Abdollahi, M., Pourmahdi, M., Nasiri, A.R., 2018. Synthesis and characterization of lignosulfonate/acrylamide graft copolymers and their application in environmentally friendly water- based drilling fluid. J. Pet. Sci. Eng. 171, 484–494. https://doi.org/10.1016/J.PETROL.2018.07.065.

 

Aboulrous, A.A., Haddad, A.S., Rafati, R., Boyou, N.V., Alsabagh, A.M., 2022. Review of synthesis, characteristics and technical challenges of biodiesel based drilling fluids. J. Clean. Prod. 336, 130344. https://doi.org/10.1016/J.JCLEPRO.2021.130344.

 

Adhami, S., Jamshidi-Zanjani, A., Darban, A.K., 2021. Remediation of oil-based drilling waste using the electrokinetic-Fenton method. Process Saf. Environ. Protect. 149, 432–441. https://doi.org/10.1016/J.PSEP.2020.11.018.

 

Adnan Hamad, B., He, M., Xu, M., Liu, W., Mpelwa, M., Tang, S., Jin, L., Song, J., 2020. A novel amphoteric polymer as a rheology enhancer and fluid-loss control agent for water-based drilling muds at elevated temperatures. Cite This ACS Omega 5, 8495. https://doi.org/10.1021/acsomega.9b03774.

 

Aftab, A., Ismail, A.R., Ibupoto, Z.H., 2017. Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet. Egypt. J. Petrol. 26, 291–299. https://doi.org/10.1016/J.EJPE.2016.05.004.

 

Agwu, O.E., Akpabio, J.U., Ekpenyong, M.E., Inyang, U.G., Asuquo, D.E., Eyoh, I.J., Adeoye, O.S., 2021a. A critical review of drilling mud rheological models. J. Pet. Sci. Eng. 203, 108659. https://doi.org/10.1016/J.PETROL.2021.108659.

 

Agwu, O.E., Akpabio, J.U., Ekpenyong, M.E., Inyang, U.G., Asuquo, D.E., Eyoh, I.J., Adeoye, O.S., 2021b. A comprehensive review of laboratory, field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. J. Nat. Gas Sci. Eng. 94, 104046. https://doi.org/10.1016/J.JNGSE.2021.104046.

 

Ahmad, H.M., Kamal, M.S., Al-Harthi, M.A., 2018. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids. J. Mol. Liq. 252, 133–143. https://doi.org/10.1016/J.MOLLIQ.2017.12.135.

 

Ahmed, N., Alam, M.S., Salam, M.A., 2020. Experimental analysis of drilling fluid prepared by mixing iron (Ⅲ) oxide nanoparticles with a KCl–Glycol–PHPA polymer-based mud used in drilling operation. J. Pet. Explor. Prod. Technol. 10, 3389–3397. https://doi.org/10.1007/s13202-020-00933-1.

 

Akpan, E.U., Enyi, G.C., Nasr, G.G., 2020. Enhancing the performance of xanthan gum in water-based mud systems using an environmentally friendly biopolymer. J. Pet. Explor. Prod. Technol. 10, 1933–1948. https://doi.org/10.1007/S13202-020-00837-0/FIGURES/14.

 
Al-Hameedi, A.T.T., Alkinani, H.H., Dunn-Norman, S., Al-Alwani, M.A., Alshammari, A.F., Albazzaz, H.W., Alkhamis, M.M., Mutar Rusul, A., Al-Bazzaz, W.H., 2019. Proposing a new eco-friendly drilling fluid additive to enhance the filtration properties of water-based drilling fluid systems. Soc. Pet. Eng.-SPE Gas Oil Technol. Showc. Conf. https://doi.org/10.2118/198651-MS, 2019, GOTS.
 

Al-Muhailan, M.S., Rajagopalan, A., Al-Shayji, A.K., Jadhav, P.B., Khatib, F.I., 2014. Successful application of customized fluid using specialized synthetic polymer in high pressured wells to mitigate differential stikcing problems by minimizing pore pressure transmission. Soc. Pet. Eng. - Int. Pet. Technol. Conf. 3, 1822–1834. https://doi.org/10.2523/IPTC-17913-MS.

 

Al-Shargabi, M., Davoodi, S., Wood, D.A., Al-Musai, A., Rukavishnikov, V.S., Minaev, K.M., 2022a. Nanoparticle applications as beneficial oil and gas drilling fluid additives: a review. J. Mol. Liq. 352, 118752. https://doi.org/10.1016/j.molliq.2022.118725.

 

Al-Shargabi, M., Davoodi, S., Wood, D.A., Rukavishnikov, V.S., Minaev, K.M., 2022b. Carbon Dioxide applications for enhanced oil recovery assisted by nanoparticles: recent developments. ACS Omega 7 (12), 9984–9994. https://doi.org/10.1021/ACSOMEGA.1C07123.

 

Ali, I., Ahmad, M., Ganat, T., 2022. Biopolymeric formulations for filtrate control applications in water-based drilling muds: a review. J. Pet. Sci. Eng. 210, 110021. https://doi.org/10.1016/J.PETROL.2021.110021.

 

Ali Khan, M., Khan, M.A., Al-Salim, H.S., Arsanjani, L.N., Akademia Baru, P., 2018. Development of high temperature high pressure (HTHP) water based drilling mud using synthetic polymers, and nanoparticles. J. Adv. Res. Fluid Mech. Therm. Sci. 45, 99–108.

 
Alibaba, 2023. Website [WWW Document] URL. https://www.alibaba.com.
 

An, Y., Yu, P., 2018. A strong inhibition of polyethyleneimine as shale inhibitor in drilling fluid. J. Pet. Sci. Eng. 161, 1–8. https://doi.org/10.1016/J.PETROL.2017.11.029.

 

Anderson, R.L., Ratcliffe, I., Greenwell, H.C., Williams, P.A., Cliffe, S., Coveney, P.V., 2010. Clay swelling-A challenge in the oilfield. Earth Sci. Rev. 98, 201–216. https://doi.org/10.1016/J.EARSCIREV.2009.11.003.

 
Apaleke, A.S., Al-Majed, A., Hossain, M.E., 2012. Drilling fluid: state of the art and future. Trend. Soc. Pet. Eng. - North Africa Tech. Conf. Exhib. 2012, NATC 2012 Manag. Hydrocarb. Resour. a Chang. Environ. 1, 101–113. https://doi.org/10.2118/149555-MS.
 
ASTM E1367-03, 2014. Methods for Assessing the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Amphipods. ASTM Inter, West Conshohocken.
 
Austin, E.H., 1983. Drilling engineering handbook. Drill. Eng. Handb. https://doi.org/10.1007/978-94-009-7261-2.
 

Baba Hamed, S., Belhadri, M., 2009. Rheological properties of biopolymers drilling fluids. J. Pet. Sci. Eng. 67, 84–90. https://doi.org/10.1016/J.PETROL.2009.04.001.

 

Bakke, T., Klungsøyr, J., Sanni, S., 2013. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Environ. Res. 92, 154–169. https://doi.org/10.1016/J.MARENVRES.2013.09.012.

 

Balaga, D.K., Kulkarni, S.D., 2022. A review of synthetic polymers as filtration control additives for water-based drilling fluids for high-temperature applications. J. Pet. Sci. Eng. 215, 110712. https://doi.org/10.1016/J.PETROL.2022.110712.

 

Balaji, A.B., Pakalapati, H., Khalid, M., Walvekar, R., Siddiqui, H., 2017. Natural and synthetic biocompatible and biodegradable polymers. Biodegrad. Biocompatible Polym. Compos. Process. Prop. Appl. 3–32. https://doi.org/10.1016/B978-0-08-100970-3.00001-8.

 

Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N.D., Vlachopoulos, A., Koumentakou, I., Bikiaris, D.N., 2021. Poly(lactic acid): a versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 13 (11), 1822. https://doi.org/10.3390/POLYM13111822.

 

Beg, M., Sharma, S., Ojha, U., 2018. Effect of cationic copolyelectrolyte additives on drilling fluids for shales. J. Pet. Sci. Eng. 161, 506–514. https://doi.org/10.1016/J.PETROL.2017.12.009.

 

Beg, M., Singh, P., Sharma, S., Ojha, U., 2019. Shale inhibition by low-molecular-weight cationic polymer in water-based mud. J. Pet. Explor. Prod. Technol. 9, 1995–2007. https://doi.org/10.1007/S13202-018-0592-7/TABLES/5.

 

Bergman, W.E., Fisher, H.B., 2002. Bentonite suspensions-Effect of sodium chloride, sodium hydroxide, quebracho, and sodium carboxymethylcellulose upon physical properties. Ind. Eng. Chem. 42, 1895–1900. https://doi.org/10.1021/IE50489A050.

 
Bergström, J., 2015. Mechanics of Solid Polymers, Mechanics of Solid Polymers. William Andrew Publishing, pp. 1–17. https://doi.org/10.1016/B978-0-323-31150-2.00001-7.
 
Bland, R., Mullen, G., Gonzalez, Y., Harvey, F., Pless, M., 2006. HP/HT Drilling Fluids Challenges. Proc. IADC/SPE Asia Pacific Drill. Technol. Conf. 2006 - Meet. Value Chall. Performance, Deliv. Cost, pp. 362–372. https://doi.org/10.2118/103731-MS.
 

Blkoor, S.O., Mohd Norddin, M.N.A., Ismail, I., Oseh, J.O., Agi, A., Gbadamosi, A.O., Okoli, N.O., Onyejekwe, I.M., Risal, A.R., 2022. Amphipathic anionic surfactant modified hydrophilic polyethylene glycol-nanosilica composite as effective viscosifier and filtration control agent for water-based drilling muds. Arab. J. Chem. 15, 103741. https://doi.org/10.1016/J.ARABJC.2022.103741.

 

Boutammine, H., Salem, Z., Khodja, M., 2020. Petroleum drill cuttings treatment using stabilization/solidification and biological process combination. Soil Sediment Contam.: Int. J. 29 (4), 369–383. https://doi.org/10.1080/15320383.2020.1722982.

 

Browning, W.C., 1955. Lignosulfonate stabilized emulsions in oil well drilling fluids. J. Petrol. Technol. 7, 9–15. https://doi.org/10.2118/393-G.

 
Buru Energy (Company), 2021. Well Drilling Environment Plan: Additional Chemical Disclosure Summary Document.
 

Byzov, A., Pak, A., Kuznetsova, D., Ostapenko, G., 2019. Analysis of the statistical correlation between the estimated value of individual risk and the hazard class of a hazardous production facility in the Russian Federation. E3S Web Conf 140. https://doi.org/10.1051/E3SCONF/201914008004.

 
Caenn, R., Darley, H.C.H., Gray, G.R., 2016. Composition and properties of drilling and completion fluids. In: Composition and Properties of Drilling and Completion Fluids, seventh ed. Gulf Professional Publishing. Seventh Edition.
 

Cancelas, A.J., Monteil, V., McKenna, T.F.L., 2016. Influence of activation conditions on the gas phase polymerisation of propylene. Macromol. Symp. 360, 133–141. https://doi.org/10.1002/MASY.201500099.

 

Canfarotta, F., Poma, A., Guerreiro, A., Piletsky, S., 2016. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 11, 443–455. https://doi.org/10.1038/nprot.2016.030.

 

Celino, K.N., Souza, E.A. de, Balaban, R. de C., 2022. Emulsions of glycerol in olefin: a critical evaluation for application in oil well drilling fluids. Fuel 308. https://doi.org/10.1016/j.fuel.2021.121959.

 

Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J., Cho, G.C., 2020. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 24, 100385. https://doi.org/10.1016/J.TRGEO.2020.100385.

 

Chaudhary, V., Sharma, S., 2019. Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions. J. Polym. Res. 26, 1–12. https://doi.org/10.1007/S10965-019-1767-8/TABLES/4.

 

Chen, Y., Wu, R., Zhou, J., Chen, H., Tan, Y., 2021. A novel hyper-cross-linked polymer for high-efficient fluid-loss control in oil-based drilling fluids. Colloids Surfaces A Physicochem. Eng. Asp. 626, 127004. https://doi.org/10.1016/J.COLSURFA.2021.127004.

 

Chesser, B.G., Enright, D.P., 1980. High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer. J. Petrol. Technol. 32, 950–956. https://doi.org/10.2118/8224-PA.

 

Chu, Q., Lin, L., 2019. Effect of molecular flexibility on the rheological and filtration properties of synthetic polymers used as fluid loss additives in water-based drilling fluid. RSC Adv. 9, 8608–8619. https://doi.org/10.1039/C9RA00038K.

 

Chu, Q., Su, J., Lin, L., 2020. Inhibition performance of amidocyanogen silanol in water-based drilling fluid. Appl. Clay Sci. 185, 105315. https://doi.org/10.1016/J.CLAY.2019.105315.

 
Chudinova, I.V., Nikolaev, N.I., Petrov, A.A., 2019. Design of Domestic Compositions of Drilling Fluids for Drilling Wells in Shales.
 

Cummings, S., Zhang, Y., Smeets, N., Cunningham, M., Dubé, M.A., 2019. On the use of starch in emulsion polymerizations. Processes 7 (3), 140. https://doi.org/10.3390/PR7030140.

 

Dai, C., Zhao, F., 2018. Drilling fluid chemistry. Oilfield Chem. 21–84. https://doi.org/10.1007/978-981-13-2950-0_2.

 
Daneshfar, R., Moghadasi, J., Mojtaba Bassir, S., Kamranfar, P., Mohammadzadeh, H., 2018. Prediction of Petrophysical/Geophysical Parameters by Artificial Intelligence View Project Simulation of Low Salinity Water Injection Process in a Carbonate Reservoir in Southern Part of Iran: Case Study View Project Shale Hydration Inhibitive Materials a.
 

Dardir, M.M., Ibrahime, S., Soliman, M., Desouky, S.D., Hafiz, A.A., 2014. Preparation and evaluation of some esteramides as synthetic based drilling fluids. Egypt. J. Petrol. 23, 35–43. https://doi.org/10.1016/J.EJPE.2014.02.006.

 

Davoodi, S., Ahmed Ramazani, S.A.A., Soleimanian, A., Fellah Jahromi, A., 2019. Application of a novel acrylamide copolymer containing highly hydrophobic comonomer as filtration control and rheology modifier additive in water-based drilling mud. J. Pet. Sci. Eng. 180, 747–755. https://doi.org/10.1016/J.PETROL.2019.04.069.

 

Davoodi, S., Ramazani, A., Rukavishnikov, V., Minaev, K., 2021. Insights into application of acorn shell powder in drilling fluid as environmentally friendly additive: filtration and rheology. Int. J. Environ. Sci. Technol. 18, 835–848. https://doi.org/10.1007/S13762-020-02880-0/FIGURES/8.

 

Davoodi, S., Al-Shargabi, M., Wood, D.A., Rukavishnikov, V.S., Minaev, K.M., 2022a. Experimental and field applications of nanotechnology for enhanced oil recovery purposes: a review. Fuel 324, 124669. https://doi.org/10.1016/J.FUEL.2022.124669.

 

Davoodi, S., Al-Shargabi, M., Woodc, D.A., Rukavishnikov, V.S., Minaev, K.M., 2022b. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: a review. J. Mol. Liq. 121117. https://doi.org/10.1016/J.MOLLIQ.2022.121117.

 

De Vos, L., Van de Voorde, B., Van Daele, L., Dubruel, P., Van Vlierberghe, S., 2021. Poly(alkylene terephthalate)s: from current developments in synthetic strategies towards applications. Eur. Polym. J. 161, 110840. https://doi.org/10.1016/J.EURPOLYMJ.2021.110840.

 

Deville, J.P., 2022. Drilling fluids. Fluid Chem. Drill. Complet. 115–185. https://doi.org/10.1016/B978-0-12-822721-3.00010-1.

 

Dias, F.T.G., Souza, R.R., Lucas, E.F., 2015. Influence of modified starches composition on their performance as fluid loss additives in invert-emulsion drilling fluids. Fuel 140, 711–716. https://doi.org/10.1016/j.fuel.2014.09.074.

 

Dong, X., Sun, J., Huang, X., Lv, K., Zhou, Z., Gao, C., 2022. Nano-laponite/polymer composite as filtration reducer on water-based drilling fluid and mechanism study. R. Soc. Open Sci. 9. https://doi.org/10.1098/RSOS.220385/.

 

Douka, A., Vouyiouka, S., Papaspyridi, L.M., Papaspyrides, C.D., 2018. A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 79, 1–25. https://doi.org/10.1016/J.PROGPOLYMSCI.2017.10.001.

 

Du, H., Lv, K., Sun, J., Huang, X., Shen, H., 2022. Styrene-lauryl acrylate rubber nanogels as a plugging agent for oil-based drilling fluids with the function of improving emulsion stability. Gels 9, 23. https://doi.org/10.3390/GELS9010023/S1.

 

Dye, W., d'Augereau, K., Hansen, N., Otto, M., Shoults, L., Leaper, R., Clapper, D., Xiang, T., 2006. New water-based mud balances high-performance drilling and environmental compliance. SPE Drill. Complet. 21, 255–267. https://doi.org/10.2118/92367-PA.

 
Ebnesajjad, S., 2015. Polymerization and finishing of tetrafluoroethylene. In: Fluoroplastics. William Andrew Publishing, pp. 95–156. https://doi.org/10.1016/B978-1-4557-3199-2.00008-2.
 

Edeleva, M., Marien, Y.W., Van Steenberge, P.H.M., D'Hooge, D.R., 2021. Impact of side reactions on molar mass distribution, unsaturation level and branching density in solution free radical polymerization of n -butyl acrylate under well-defined lab-scale reactor conditions. Polym. Chem. 12, 2095–2114. https://doi.org/10.1039/D1PY00151E.

 

El-Hamshary, H., Fouda, M.M.G., Moydeen, M., Al-Deyab, S.S., 2014. Removal of heavy metal using poly (N-vinylimidazole)-grafted-carboxymethylated starch. Int. J. Biol. Macromol. 66, 289–294. https://doi.org/10.1016/J.IJBIOMAC.2014.02.047.

 

El-hoshoudy, A.N., Desouky, S.E.M., Al-Sabagh, A.M., Betiha, M.A., kady, M.Y.E., Mahmoud, S., 2017. Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate. Egypt. J. Petrol. 26, 779–785. https://doi.org/10.1016/J.EJPE.2016.10.012.

 
EPA, 1993. Oil and Gas Extraction Point Source Category, Offshore Subcategory; Effluent Limitations Guidelines and New Source Performance Standards.
 

Ezell, R.G., Ezzat, A.M., Turner, J.K., Wu, J.J., 2010. New filtration-control polymer for improved brine-based reservoir drilling-fluids performance at temperatures in excess of 400°F and high pressure. Proc.-SPE Annu. Tech. Conf. Exhib. 1, 25–32. https://doi.org/10.2118/128119-MS.

 

Fadairo, A., Falode, O., Ako, C., Adeyemi, A., Ameloko, A., Fadairo, A., Falode, O., Ako, C., Adeyemi, A., Ameloko, A., 2012. Novel formulation of environmentally friendly oil based drilling mud. New Technol. Oil Gas Ind. https://doi.org/10.5772/51236.

 

Fagundes, K.R.S., Da Souza Luz, R.C., Fagundes, F.P., De Carvalho Balaban, R., 2018. Effect of carboxymethylcellulose on colloidal properties of calcite suspensions in drilling fluids. Polímeros 28, 373–379. https://doi.org/10.1590/0104-1428.11817.

 

Ferreira, C.C., Teixeira, G.T., Lachter, E.R., Nascimento, R.S.V., 2016. Partially hydrophobized hyperbranched polyglycerols as non-ionic reactive shale inhibitors for water-based drilling fluids. Appl. Clay Sci. 132–133, 122–132. https://doi.org/10.1016/J.CLAY.2016.05.025.

 
Fink, J.K., 2021. Petroleum Engineer's Guide to Oil Field Chemicals and Fluids. https://doi.org/10.1016/C2009-0-61871-7.
 

Friedheim, J.E., 1997. Second-generation synthetic drilling fluids. J. Petrol. Technol. 49, 724–728. https://doi.org/10.2118/38251-JPT.

 

Fulcrand, H., Doco, T., Es-Safi, N.E., Cheynier, V., Moutounet, M., 1996. Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography-ion spray mass spectrometry. J. Chromatogr. A 752, 85–91. https://doi.org/10.1016/S0021-9673(96)00485-2.

 
Gaillard, N., Thomas, A., Bataille, S., Dupuis, G., Daguerre, F., Favéro, C., 2017. Advanced selection of polymers for EOR considering shear and hardness tolerance properties. In: IOR Norw. 2017-19th Eur. Symp. Improv. Oil Recover. Sustain. IOR a Low Oil Price World 2017, 1–18. https://doi.org/10.3997/2214-4609.201700333/CITE/REFWORKS.
 

Gaurina-međimurec, N., Pašić, B., Mijić, P., Medved, I., 2021. Drilling fluid and cement slurry design for naturally fractured reservoirs. Appl. Sci. 11 (2), 767. https://doi.org/10.3390/APP11020767.

 

Gautam, S., Guria, C., 2020. Optimal synthesis, characterization, and performance evaluation of high-pressure high-temperature polymer-based drilling fluid: the effect of viscoelasticity on cutting transport, filtration loss, and lubricity. SPE J. 25, 1333–1350. https://doi.org/10.2118/200487-PA.

 

Gautam, S., Guria, C., Rajak, V.K., 2022. A state of the art review on the performance of high-pressure and high-temperature drilling fluids: towards understanding the structure-property relationship of drilling fluid additives. J. Pet. Sci. Eng. 213, 110318. https://doi.org/10.1016/J.PETROL.2022.110318.

 

Ge, W.F., Chen, M., Jin, Y., Xie, S.X., Jiang, G.C., 2012. A “dual protection” drilling fluid system and its application. Petrol. Sci. Technol. 30, 1274–1284. https://doi.org/10.1080/10916466.2010.504934.

 
Geng, Y., Sun, J., Wang, J., Wang, R., Yang, J., Wang, Q., Ni, X., 2021. Modified nanopolystyrene as a plugging agent for oil-based drilling fluids applied in shale formation. Energy Fuel. 35, 16543–16552. https://doi.org/10.1021/ACS.ENERGYFUELS.1C02546/ASSET/IMAGES/MEDIUM/EF1C02546_0017 (GIF).
 
Gerali, Francesco, 2018. Drilling Fluids, Residence at the. IEEE History Center.
 

Ghasemi, N., Mirzaee, M., Aghayari, R., Maddah, H., 2018. Investigating created properties of nanoparticles based drilling mud. Heat Mass Transf. und Stoffuebertragung 54, 1381–1393. https://doi.org/10.1007/s00231-017-2229-7.

 

Ghazali, N.A., Naganawa, S., Masuda, Y., Ibrahim, W.A., Abu Bakar, N.F., 2018. Eco-friendly drilling fluid deflocculant for drilling high temperature well: a review. Proc. Int. Conf. Offshore Mech. Arct. Eng.-OMAE 8. https://doi.org/10.1115/OMAE2018-78149.

 

Gholami, R., Elochukwu, H., Fakhari, N., Sarmadivaleh, M., 2018. A review on borehole instability in active shale formations: interactions, mechanisms and inhibitors. Earth Sci. Rev. 177, 2–13. https://doi.org/10.1016/J.EARSCIREV.2017.11.002.

 

Grattan-Guinness, I., 2014. From anomaly to fundament: louis Poinsot's theories of the couple in mechanics. Hist. Math. 41, 82–102. https://doi.org/10.1016/J.HM.2013.08.002.

 

Gu, J., Gan, P., Dong, L., Wang, S., Tang, N., 2019. Prediction of water channeling along cement-aquifuge interface in CBM well: model development and experimental verification. J. Pet. Sci. Eng. 173, 536–546. https://doi.org/10.1016/J.PETROL.2018.10.040.

 

Gueciouer, A., Benmounah, A., Sekkiou, H., Kheribet, R., Safi, B., 2017. Valorization of KCl/PHPA system of water-based drilling fluid in presence of reactive clay: application on Algerian field. Appl. Clay Sci. 146, 291–296. https://doi.org/10.1016/J.CLAY.2017.06.007.

 
Hall, L.J., Deville, J.P., Santos, C.M., Rojas, O.J., Araujo, C.S., 2018. Nanocellulose and biopolymer blends for high-performance water-based drilling fluids. Soc. Pet. Eng.-IADC/SPE Drill. Conf. Exhib. DC. https://doi.org/10.2118/189577-MS.
 

Han, Z., Jiang, G., Li, Q., 2014. Application of a novel associative polymer on synthetic-based drilling muds for deepwater drilling. SOCAR Proc 2. https://doi.org/10.5510/OGP20140200193.

 

Hay, W.W., 2021. The earth is a sphere and rotates. Exp. a Small Planet 543–574. https://doi.org/10.1007/978-3-030-76339-8_24.

 

He, X., 2010. The Past, Present and future of aphron based drilling fluids. Proc. - SPE Annu. Tech. Conf. Exhib. 7, 5992–6005. https://doi.org/10.2118/141136-STU.

 

He, Y., Wu, Y., Zhang, M., Zhang, Y., Ding, H., Zhang, K., 2021. Controlled ring-opening polymerization of macrocyclic monomers based on the quinone methide elimination cascade reaction. Macromolecules 54, 5797–5805. https://doi.org/10.1021/ACS.MACROMOL.1C00872/SUPPL_FILE/MA1C00872_SI_001.PDF.

 
Hernandez, E.D.D., Reyes-Romero, J.R., 2019. Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers, Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers. Elsevier. https://doi.org/10.1016/B978-0-12-816874-5.00014-1.
 

Huang, W., Zhao, C., Qiu, Z., Leong, Y.K., Zhong, H., Cao, J., 2015. Synthesis, characterization and evaluation of a quadripolymer with low molecular weight as a water based drilling fluid viscosity reducer at high temperature (245 ℃). Polym. Int. 64, 1352–1360. https://doi.org/10.1002/PI.4923.

 

Huang, Y., Zhang, D., Zheng, W., 2019. Synthetic copolymer (AM/AMPS/DMDAAC/SSS) as rheology modifier and fluid loss additive at HTHP for water-based drilling fluids. J. Appl. Polym. Sci. 136. https://doi.org/10.1002/APP.47813.

 

Huo, J.H., Peng, Z.G., Ye, Z.B., Feng, Q., Zheng, Y., Zhang, J., Liu, X., 2018. Investigation of synthesized polymer on the rheological and filtration performance of water-based drilling fluid system. J. Pet. Sci. Eng. 165, 655–663. https://doi.org/10.1016/J.PETROL.2018.03.003.

 

Ibrahim, M.A., Saleh, T.A., 2020. Partially aminated acrylic acid grafted activated carbon as inexpensive shale hydration inhibitor. Carbohydr. Res. 491, 107960. https://doi.org/10.1016/J.CARRES.2020.107960.

 

Ibrahim, D.S., Sami, N.A., Balasubramanian, N., 2017. Effect of barite and gas oil drilling fluid additives on the reservoir rock characteristics. J. Pet. Explor. Prod. Technol. 7, 281–292. https://doi.org/10.1007/S13202-016-0258-2/TABLES/12.

 

Ibrahim, A.O., Momoh, O.R., Isa, M.T., 2019. Improving rheological properties of Gambe clay for drilling fluid application using fermentable polymers. Niger. J. Technol. Dev. 15, 113–120. https://doi.org/10.4314/njtd.v15i4.2.

 

Imam, A., Suman, S.K., Ghosh, D., Kanaujia, P.K., 2019. Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. TrAC, Trends Anal. Chem. 118, 50–64. https://doi.org/10.1016/J.TRAC.2019.05.023.

 
Imohiosen, O.U.O., Akintola, S.A., 2021. Effect of sodium carboxymethyl cellulose from delonix regia sawdust on rheological and filtration properties of water based drilling fluid. Soc. Pet. Eng. - SPE Niger. Annu. Int. Conf. Exhib. 2021. https://doi.org/10.2118/207200-MS.
 
ISO10253, 2006. Water Quality—Marine Algal Growth Inhibition Test with Skeletonema Costatum and Phaeodactylum Tricornutum (Geneva, Switzerland).
 
ISO14669, 1999. Water Quality — Determination of Acute Lethal Toxicity to Marine Copepods (Copepoda, Crustacea) (Geneva, Switzerland).
 
ISO14971, 2015. Hazard and Hazardous Situation [WWW Document]. Johner-Institute. URL. https://www.johner-institute.com/articles/risk-managementiso-14971/hazard-and-hazardous-situation/.
 
ISO16778, 2015. Water Quality — Calanoid Copepod Early-Life Stage Test with Acartia Tonsa (Geneva, Switzerland).
 

Jain, R., Mahto, V., 2015. Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system. J. Pet. Sci. Eng. 133, 612–621. https://doi.org/10.1016/J.PETROL.2015.07.009.

 

Jain, R., Mahto, V., 2017. Formulation of a water based drilling fluid system with synthesized graft copolymer for troublesome shale formations. J. Nat. Gas Sci. Eng. 38, 171–181. https://doi.org/10.1016/j.jngse.2016.12.018.

 

Jain, R., Paswan, B.K., Mahto, T.K., Mahto, V., 2017. Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system. Egypt. J. Pet. 26, 875–883. https://doi.org/10.1016/J.EJPE.2015.03.016.

 

Jayaweera, C.D., Narayana, M., 2021. Multi-objective dynamic optimization of seeded suspension polymerization process. Chem. Eng. J. 426, 130797. https://doi.org/10.1016/J.CEJ.2021.130797.

 
Ji, G., Wang, H., Huang, H., Cui, M., Yulong, F., Ma, Y., Sun, X., 2021. Achieving Improved Drilling Performance with Hole Cleaning Technology in Horizontal Shale Gas Wells in Sichuan Basin of China. International Petroleum Technology Conference. https://doi.org/10.2523/IPTC-21214-MS.
 

Jia, X., Zhao, X., Chen, B., Egwu, S.B., Huang, Z., 2022. Polyanionic cellulose/hydrophilic monomer copolymer grafted silica nanocomposites as HTHP drilling fluid-loss control agent for water-based drilling fluids. Appl. Surf. Sci. 578, 152089. https://doi.org/10.1016/J.APSUSC.2021.152089.

 

Jiang, G., Li, Y., Kong, Y., Ling, L., Feng, C., Zeng, C., 2015. Application of acrylate copolymers in the drilling-in completion fluid for low and extra low permeability reservoirs. Energy Sources, Part A Recover. Util. Environ. Eff. 37, 633–641. https://doi.org/10.1080/15567036.2011.592905.

 

Jiang, G.C., Qi, Y.R., An, Y.X., Huang, X.B., Ren, Y.J., 2016. Polyethyleneimine as shale inhibitor in drilling fluid. Appl. Clay Sci. 127–128, 70–77. https://doi.org/10.1016/J.CLAY.2016.04.013.

 

Jiao, G., Zhu, S., Ye, Z., Shu, Z., Wang, X., Wang, D., 2023. The effect of shear on the properties of an associated polymer solution for oil displacement. Polymers 15 (3), 616. https://doi.org/10.3390/POLYM15030616.

 

John, G., Nagarajan, S., Vemula, P.K., Silverman, J.R., Pillai, C.K.S., 2019. Natural monomers: a mine for functional and sustainable materials – occurrence, chemical modification and polymerization. Prog. Polym. Sci. 92, 158–209. https://doi.org/10.1016/J.PROGPOLYMSCI.2019.02.008.

 

Jönsson, J.E., Karlsson, O.J., Hassander, H., Törnell, B., 2007. Semi-continuous emulsion polymerization of styrene in the presence of poly(methyl methacrylate) seed particles. Polymerization conditions giving core–shell particles. Eur. Polym. J. 43, 1322–1332. https://doi.org/10.1016/J.EURPOLYMJ.2007.01.027.

 

Kania, D., Yunus, R., Omar, R., Abdul Rashid, S., Mohamad Jan, B., 2015. A review of biolubricants in drilling fluids: recent research, performance, and applications. J. Pet. Sci. Eng. 135, 177–184. https://doi.org/10.1016/J.PETROL.2015.09.021.

 

Kariman Moghaddam, A., Davoodi, S., Ramazani, S.A.A., Minaev, K.M., 2022. Mesoscopic theoretical modeling and experimental study of rheological behavior of water-based drilling fluid containing associative synthetic polymer, bentonite, and limestone. J. Mol. Liq. 347, 117950. https://doi.org/10.1016/J.MOLLIQ.2021.117950.

 

Khalil, M., Mohamed Jan, B., 2012. Viscoplastic modeling of a novel lightweight biopolymer drilling fluid for underbalanced drilling. Ind. Eng. Chem. Res. 51, 4056–4068. https://doi.org/10.1021/IE200811Z.

 

Koh, J.K., Lai, C.W., Johan, M.R., Gan, S.S., Chua, W.W., 2022. Recent advances of modified polyacrylamide in drilling technology. J. Pet. Sci. Eng. 215, 110566. https://doi.org/10.1016/J.PETROL.2022.110566.

 

Konstantin, M.M., Vyacheslav, A.Y., Daria, O.M., Aleksey, S.Z., Rashid, R.S., Mikhail, O.A., Sushil, K.P., 2018. Comparative research of filtration reducers based on carboximethyl esters of starch and cellulose in modern drilling mud systems. Bull. Tomsk Polytech. Univ. Geo Аssets Eng. 57–66.

 
Krzysztof, M., Thomas, P.D., 2002. Handbook of Radical Polymerization. John Wiley & Sons, Inc. John Wiley & Sons, Inc. https://doi.org/10.1002/0471220450.
 

Kuma, M., Das, B.M., Talukdar, P., 2020. The effect of salts and haematite on carboxymethyl cellulose–bentonite and partially hydrolyzed polyacrylamide–bentonite muds for an effective drilling in shale formations. J. Pet. Explor. Prod. Technol. 10, 395–405. https://doi.org/10.1007/S13202-019-0722-X/FIGURES/33.

 

Lambert, S., Sinclair, C., Boxall, A., 2014. Occurrence, degradation, and effect of polymer-based materials in the environment. Rev. Environ. Contam. Toxicol. 227, 1–53. https://doi.org/10.1007/978-3-319-01327-5_1/TABLES/7.

 

Lei, M., Huang, W., Sun, J., Shao, Z., Wu, T., Liu, J., Fan, Y., 2020. Synthesis of carboxymethyl chitosan as an eco-friendly amphoteric shale inhibitor in water-based drilling fluid and an assessment of its inhibition mechanism. Appl. Clay Sci. 193, 105637. https://doi.org/10.1016/J.CLAY.2020.105637.

 

Lei, M., Huang, W., Sun, J., Shao, Z., Chen, Z., Chen, W., 2021a. Synthesis and characterization of high-temperature self-crosslinking polymer latexes and their application in water-based drilling fluid. Powder Technol. 389, 392–405. https://doi.org/10.1016/J.POWTEC.2021.05.045.

 

Lei, M., Huang, W., Sun, J., Shao, Z., Zhao, L., Zheng, K., Fang, Y., 2021b. Synthesis and characterization of thermo-responsive polymer based on carboxymethyl chitosan and its potential application in water-based drilling fluid. Colloids Surfaces A Physicochem. Eng. Asp. 629, 127478. https://doi.org/10.1016/J.COLSURFA.2021.127478.

 
Li, H., Xiao, H.Z., Zhang, R.D., He, G., Zhao, B., Zhu, J.Z., Yin, D., He, T., Song, L.H., 2004. A Kind of Polyalcohol Lubricating Inhibitor for Drilling Fluid.
 

Li, J., Sun, J., Lv, K., Ji, Y., Ji, J., Bai, Y., Wang, J., Jin, J., Shi, S., Huang, X., Liu, J., 2023. A zwitterionic copolymer as fluid loss reducer for water-based drilling fluids in high temperature and high salinity conditions. Geoenergy Sci. Eng. 222, 111200. https://doi.org/10.1016/J.PETROL.2022.111200.

 

Li, M.C., Wu, Q., Song, K., De Hoop, C.F., Lee, S., Qing, Y., Wu, Y., 2016. Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modeling and filtration mechanisms. Ind. Eng. Chem. Res. 55, 133–143. https://doi.org/10.1021/ACS.IECR.5B03510/SUPPL_FILE/IE5B03510_SI_001.PDF.

 

Li, P., Xu, Y., Liu, Y., Feng, J., Hui, B., Feng, Y., Hu, M., Guo, J., 2021. Terpolymer with rigid side chain as filtrate reducer for water-based drilling fluids. J. Appl. Polym. Sci. 138, 50237. https://doi.org/10.1002/APP.50237.

 

Li, W., Jiang, G., Ni, X., Li, Y., Wang, X., Luo, X., 2020. Styrene butadiene resin/nano-SiO2 composite as a water-and-oil-dispersible plugging agent for oil-based drilling fluid. Colloids Surfaces A Physicochem. Eng. Asp. 606, 125245. https://doi.org/10.1016/J.COLSURFA.2020.125245.

 

Li, W., Zhao, X., Li, Y., Ji, Y., Peng, H., Liu, L., Yang, Q., 2015. Laboratory investigations on the effects of surfactants on rate of penetration in rotary diamond drilling. J. Pet. Sci. Eng. 134, 114–122. https://doi.org/10.1016/J.PETROL.2015.07.027.

 

Li, W., Zhao, X., Ji, Y., Peng, H., Chen, B., Liu, L., Han, X., 2016a. Investigation of biodiesel-based drilling fluid, Part 2: formulation design, rheological study, and laboratory evaluation. SPE J. 21, 1767–1781. https://doi.org/10.2118/180926-PA.

 

Li, W., Zhao, X., Ji, Y., Peng, H., Chen, B., Liu, L., Han, X., 2016b. Investigation of biodiesel-based drilling fluid, Part 1: biodiesel evaluation, invert-emulsion properties, and development of a novel emulsifier package. SPE J. 21, 1755–1766. https://doi.org/10.2118/180918-PA.

 

Li, W., Zhao, X., Ji, Y., Peng, H., Li, Y., Liu, L., Han, X., 2016c. An investigation on environmentally friendly biodiesel-based invert emulsion drilling fluid. J. Pet. Explor. Prod. Technol. 6, 505–517. https://doi.org/10.1007/S13202-015-0205-7/FIGURES/10.

 

Li, X., Jiang, G., He, Y., Chen, G., 2021. Novel starch composite fluid loss additives and their applications in environmentally friendly water-based drilling fluids. Energy Fuel. 35, 2506–2513. https://doi.org/10.1021/ACS.ENERGYFUELS.0C03258/ASSET/IMAGES/ACS.ENERGYFUELS.0C03258.SOCIAL.

 

Li, X., Liu, Z., Zhu, L.Y., Miao, S.S., Fang, Z., Zhao, L.H., Guo, K., 2020. Carboxylic modification of welan gum. J. Appl. Polym. Sci. 137, 48301. https://doi.org/10.1002/APP.48301.

 

Li, Y.X., Li, Y.K., Peng, Y., Yu, Y., 2019. Water shutoff and profile control in China over 60 years. Oil Drill. Prod. Technol. 41, 773–787. https://doi.org/10.13639/J.ODPT.2019.06.016.

 

Lima, B.L.B., Marques, N.N., Souza, E.A., Balaban, R.C., 2022. Polysaccharide derivative as an additive in Olefin-Based drilling fluid. J. Mol. Liq. 364, 120023. https://doi.org/10.1016/J.MOLLIQ.2022.120023.

 

Lin, L., Luo, P., 2015. Amphoteric hydrolyzed poly(acrylamide/dimethyl diallyl ammonium chloride) as a filtration reducer under high temperatures and high salinities. J. Appl. Polym. Sci. 132. https://doi.org/10.1002/APP.41581.

 

Lin, X., Sheng, Z., He, J., He, X., Wang, C., Gu, X., Wang, Y., 2021. Preparation of isotropic spinnable pitch with high-spinnability by co-carbonization of coal tar pitch and bio-asphalt. Fuel 295, 120627. https://doi.org/10.1016/J.FUEL.2021.120627.

 

Lithner, D., Larsson, A., Dave, G., 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 409, 3309–3324. https://doi.org/10.1016/J.SCITOTENV.2011.04.038.

 
Liu, P.S., Chen, G.F., 2014. Fabricating Porous Ceramics, Porous Materials. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-407788-1.00005-8.
 

Liu, J., Dai, Z., Xu, K., Yang, Y., Lv, K., Huang, X., Sun, J., 2020. Water-based drilling fluid containing bentonite/poly(sodium 4-styrenesulfonate) composite for ultrahigh-temperature ultradeep drilling and its field performance. SPE J. 25, 1193–1203. https://doi.org/10.2118/199362-PA.

 

Liu, T., Leusheva, E.L., Morenov, V.A., Li, L., Jiang, G., Fang, C., Zhang, L., Zheng, S., Yu, Y., 2020. Influence of polymer reagents in the drilling fluids on the efficiency of deviated and horizontal wells drilling. Energies 13 (18), 4704. https://doi.org/10.3390/EN13184704.

 

Luo, Z., Wang, L., Pei, J., Yu, P., Xia, B., 2018. A novel star-shaped copolymer as a rheology modifier in water-based drilling fluids. J. Pet. Sci. Eng. 168, 98–106. https://doi.org/10.1016/j.petrol.2018.05.003.

 

Luqman Hasan, M., Afiqah Zainol Abidin, N., Singh, A., 2018. The rheological performance of guar gum and castor oil as additives in water-based drilling fluid. Mater. Today Proc. 5, 21810–21817. https://doi.org/10.1016/J.MATPR.2018.07.036.

 

Luz, S.M., Del Tio, J., Rocha, G.J.M., Gonçalves, A.R., Del'Arco, A.P., 2008. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Composer Part A Appl. Sci. Manuf. 39, 1362–1369. https://doi.org/10.1016/J.COMPOSITESA.2008.04.014.

 
M-I SWACO, 2009. Drilling Fluids Guide for Process Engineers.
 

Ma, F., Pu, X., Wang, B., Li, J., Cao, C., 2017. Preparation and evaluation of polyampholyte inhibitor DAM. RSC Adv. 7, 49320–49328. https://doi.org/10.1039/C7RA08385H.

 

Ma, X., Zhou, T., Zou, Y., 2017. Experimental and numerical study of hydraulic fracture geometry in shale formations with complex geologic conditions. J. Struct. Geol. 98, 53–66. https://doi.org/10.1016/J.JSG.2017.02.004.

 

Ma, X., Zhu, Z., Shi, W., Hu, Y., 2017. Synthesis and application of a novel betaine-type copolymer as fluid loss additive for water-based drilling fluid. Colloid Polym. Sci. 295, 53–66. https://doi.org/10.1007/S00396-016-3980-X/METRICS.

 

Ma, C., Li, L., Yang, Y.P., Hao, W.W., Zhang, Q., Lv, J., 2018. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids. IOP Conf. Ser. Mater. Sci. Eng. 292, 12106. https://doi.org/10.1088/1757-899X/292/1/012106.

 

Ma, J., Pang, S., Zhang, Z., Xia, B., An, Y., 2021a. Experimental study on the polymer/graphene oxide composite as a fluid loss agent for water-based drilling fluids. ACS Omega 6 (14), 9750–9763. https://doi.org/10.1021/acsomega.1c00374.

 
Ma, J., Xu, J., Pang, S., Zhou, W., Xia, B., An, Y., 2021b. Novel Environmentally friendly lubricants for drilling fluids applied in shale formation. Energy Fuel. 35, 8153–8162. https://doi.org/10.1021/ACS.ENERGYFUELS.1C00495/ASSET/IMAGES/MEDIUM/EF1C00495_0014 (GIF).
 

Ma, J.Y., Xia, B.R., An, Y.X., 2022. Advanced developments in low-toxic and environmentally friendly shale inhibitor: a review. J. Pet. Sci. Eng. 208, 109578. https://doi.org/10.1016/J.PETROL.2021.109578.

 

Madani, M., Hosny, S., Alshangiti, D.M., Nady, N., Alkhursani, S.A., Alkhaldi, H., Al-Gahtany, S.A., Ghobashy, M.M., Gaber, G.A., 2022. Green synthesis of nanoparticles for varied applications: green renewable resources and energy-efficient synthetic routes. Nanotechnol. Rev. 11, 731–759. https://doi.org/10.1515/NTREV-2022-0034/ASSET/GRAPHIC/J_NTREV-2022-0034_FIG_005.JPG.

 

Madkour, T.M., Fadl, S., Dardir, M.M., Mekewi, M.A., 2016. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids. Egypt. J. Pet. 25, 281–291. https://doi.org/10.1016/J.EJPE.2015.09.004.

 

Manjare, S.D., Dhingra, K., 2019. Supercritical fluids in separation and purification: a review. Mater. Sci. Energy Technol. 2, 463–484. https://doi.org/10.1016/J.MSET.2019.04.005.

 

Mao, H., Wang, W., Ma, Y., Huang, Y., 2021. Synthesis, characterization and properties of an anionic polymer for water-based drilling fluid as an anti-high temperature and anti-salt contamination fluid loss control additive. Polym. Bull. 78, 2483–2503. https://doi.org/10.1007/S00289-020-03227-Y/FIGURES/12.

 

McKeen, L., 2012. Film properties of plastics and elastomers. Film Prop. Plast. Elastomers. https://doi.org/10.1016/C2011-0-05606-5.

 

Metwally, M., Nguyen, T., Wiggins, H., Saasen, A., Gipson, M., 2022. Experimental lab approach for water based drilling fluid using polyacrylamide friction reducers to drill extended horizontal wells. J. Pet. Sci. Eng. 212. https://doi.org/10.1016/j.petrol.2022.110132.

 

Mirabbasi, S.M., Ameri, M.J., Alsaba, M., Karami, M., Zargarbashi, A., 2022. The evolution of lost circulation prevention and mitigation based on wellbore strengthening theory: a review on experimental issues. J. Pet. Sci. Eng. 211, 110149. https://doi.org/10.1016/J.PETROL.2022.110149.

 

Mohamadian, N., Ghorbani, H., Wood, D.A., Khoshmardan, M.A., 2019. A hybrid nanocomposite of poly(styrene-methyl methacrylate- acrylic acid)/clay as a novel rheology-improvement additive for drilling fluids. J. Polym. Res. 26. https://doi.org/10.1007/s10965-019-1696-6.

 

Morariu, S., Teodorescu, M., Bercea, M., 2022. Rheological investigation of polymer/clay dispersions as potential drilling fluids. J. Pet. Sci. Eng. 210, 110015. https://doi.org/10.1016/J.PETROL.2021.110015.

 

Moslemizadeh, A., Khezerloo-ye Aghdam, S., Shahbazi, K., Zendehboudi, S., 2017. A triterpenoid saponin as an environmental friendly and biodegradable clay swelling inhibitor. J. Mol. Liq. 247, 269–280. https://doi.org/10.1016/J.MOLLIQ.2017.10.003.

 

Murtaza, M., Tariq, Z., Zhou, X., Al-Shehri, D., Mahmoud, M., Kamal, M.S., 2021. Okra as an environment-friendly fluid loss control additive for drilling fluids: experimental & modeling studies. J. Pet. Sci. Eng. 204, 108743. https://doi.org/10.1016/J.PETROL.2021.108743.

 

Nagre, R.D., Owusu, P.A., Tchameni, A.P., Kyei, S.K., Azanu, D., 2021. Synthesis and assessment of a hydrophobically associating heteropolymer in water-based mud. Chem. Pap. 75, 1197–1209. https://doi.org/10.1007/S11696-020-01379-9/FIGURES/10.

 

Neshat, J., Shadizadeh, S.R., 2016. Evaluation of a naturally-derived deflocculant (Terminalia chebula) in bentonite dispersions. Iran. J. Oil Gas Sci. Technol. 5, 21–44. https://doi.org/10.22050/ijogst.2016.15788.

 

Nuyken, O., Pask, S.D., 2013. Ring-opening polymerization-an introductory review. Polymers 5, 361–403. https://doi.org/10.3390/POLYM5020361.

 
OCED 117, 2004. Test No. 117: partition coefficient (n-octanol/water), HPLC method. OECD iLibrary, OECD guidelines for the testing of chemicals. Section 1. https://doi.org/10.1787/9789264069824-EN.
 
OCED 301, 1992. Test No. 301: Ready biodegradability. OECD iLibrary, OECD guidelines for the testing of chemicals. Section 3. https://doi.org/10.1787/9789264070349-EN.
 
OCED305, 2012. Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure. OECD iLibrary, OECD Guidelines for the Testing of Chemicals. Section 3. https://doi.org/10.1787/9789264185296-EN.
 

Ogunkunle, T.F., Oni, B.A., Afolabi, R.O., Fadairo, A.S., Ojo, T., Adesina, O., 2022. Comparative analysis of the performance of hydrophobically associating polymer, xanthan and guar gum as mobility control agent, in enhanced oil recovery application. J. King Saud Univ. - Eng. Sci. https://doi.org/10.1016/J.JKSUES.2022.01.003.

 

Oncsik, T., Trefalt, G., Borkovec, M., Szilagyi, I., 2015. Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series. Langmuir 31, 3799–3807. https://doi.org/10.1021/ACS.LANGMUIR.5B00225/SUPPL_FILE/LA5B00225_SI_001.PDF.

 

Oseh, J.O., Mohd Norddin, M.N.A., Ismail, I., Gbadamosi, A.O., Agi, A., Mohammed, H.N., 2019. A novel approach to enhance rheological and filtration properties of water–based mud using polypropylene–silica nanocomposite. J. Pet. Sci. Eng. 181, 106264. https://doi.org/10.1016/J.PETROL.2019.106264.

 

Oseh, J.O., Mohd, N.M.N.A., Gbadamosi, A.O., Agi, A., Blkoor, S.O., Ismail, I., Igwilo, K.C., Igbafe, A.I., 2023. Polymer nanocomposites application in drilling fluids: a review. Geoenergy Sci. Eng. 222, 211416. https://doi.org/10.1016/J.GEOEN.2023.211416.

 

Osipov, M., Wang, J., Chen, M., Li, X., Yin, X., Zheng, W., 2022. Effect of synthetic quadripolymer on rheological and filtration properties of bentonite-free drilling fluid at high temperature. Crystals 12, 257. https://doi.org/10.3390/CRYST12020257.

 
OSPAR, 2006. Part A: a Sediment Bioassay Using an Amphipod Corophium Sp.
 

Ouaer, H., Gareche, M., 2018. The rheological behaviour of a water-soluble polymer (HEC) used in drilling fluids. J. Brazilian Soc. Mech. Sci. Eng. 40, 1–8. https://doi.org/10.1007/S40430-018-1301-7/FIGURES/7.

 

Patel, A., Stamatakis, E., Young, S., Friedheim, J., 2007. Advances in inhibitive water-based drilling fluids–can they replace oil-based muds? Proc. - SPE Int. Sysposium Oilfield Chem. 614–621. https://doi.org/10.2118/106476-MS.

 

Pereira, L.B., Sad, C.M.S., Castro, E.V.R., Filgueiras, P.R., Lacerda, V., 2022. Environmental impacts related to drilling fluid waste and treatment methods: a critical review. Fuel 310, 122301. https://doi.org/10.1016/J.FUEL.2021.122301.

 

Pham, M., Pakrasi, A., 2019. Air pollution control technologies. Proc. Air Waste Manag. Assoc. Annu. Conf. Exhib. AWMA 377–428. https://doi.org/10.1016/B978-0-12-814934-8.00013-2.

 

Pinho De Aguiar, K.L.N., Frias De Oliveira, P., Elias Mansur, C.R., 2020. A comprehensive review of in situ polymer hydrogels for conformance control of oil reservoirs. Oil Gas Sci. Technol. – Rev. d’IFP Energies Nouv. 75, 8. https://doi.org/10.2516/OGST/2019067.

 

Qi, L., 2014. The application of polymer mud system in drilling engineering. Procedia Eng. 73, 230–236. https://doi.org/10.1016/J.PROENG.2014.06.192.

 

Rajak, V.K., Gautam, S., Ajit, K.P., Kiran, R., Madhumaya, A., 2022. Rheological property measurement and application of formate-based drilling fluids at elevated temperatures: a Review. MAPAN 1–17. https://doi.org/10.1007/S12647-022-00546-5.

 

Rana, A., Arfaj, M.K., Saleh, T.A., 2019. Advanced developments in shale inhibitors for oil production with low environmental footprints-A review. Fuel 247, 237–249. https://doi.org/10.1016/J.FUEL.2019.03.006.

 

Riding, J.B., 2021. A guide to preparation protocols in palynology. Palynology 45, 1–110. https://doi.org/10.1080/01916122.2021.1878305/SUPPL_FILE/TPAL_A_1878305_SM0124.DOC.

 

Riley, A., 2012. Basics of polymer chemistry for packaging materials. Packag. Technol. 262–286. https://doi.org/10.1533/9780857095701.2.262.

 

Rokhade, A.P., Patil, S.A., Aminabhavi, T.M., 2007. Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr. Polym. 67, 605–613. https://doi.org/10.1016/J.CARBPOL.2006.07.001.

 

Saboorian-Jooybari, H., Dejam, M., Chen, Z., 2016. Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: half-century studies. J. Pet. Sci. Eng. 142, 85–100. https://doi.org/10.1016/J.PETROL.2016.01.023.

 

Safi, B., Zarouri, S., Chabane-Chaouache, R., Saidi, M., Benmounah, A., 2016. Physico-chemical and rheological characterization of water-based mud in the presence of polymers. J. Pet. Explor. Prod. Technol. 6, 185–190. https://doi.org/10.1007/S13202-015-0182-X/FIGURES/9.

 

Saleh, T.A., Ibrahim, M.A., 2021. Synthesis of amyl ester grafted on carbon-nanopolymer composite as an inhibitor for cleaner shale drilling. Petroleum 8 (4), 529–537. https://doi.org/10.1016/J.PETLM.2021.07.002.

 

Saleh, T.A., Rana, A., Arfaj, M.K., Ibrahim, M.A., 2022. Hydrophobic polymer-modified nanosilica as effective shale inhibitor for water-based drilling mud. J. Pet. Sci. Eng. 209, 109868. https://doi.org/10.1016/J.PETROL.2021.109868.

 

Sepehri, S., Soleyman, R., Varamesh, A., Valizadeh, M., Nasiri, A., 2018. Effect of synthetic water-soluble polymers on the properties of the heavy water-based drilling fluid at high pressure-high temperature (HPHT) conditions. J. Pet. Sci. Eng. 166, 850–856. https://doi.org/10.1016/j.petrol.2018.03.055.

 

Singh, T., Singhal, R., 2013. Kinetics and thermodynamics of cationic dye adsorption onto dry and swollen hydrogels poly(acrylic acid-sodium acrylate-acrylamide) sodium humate. New pub Balaban 53, 3668–3680. https://doi.org/10.1080/19443994.2013.871342.

 

Steube, M., Johann, T., Barent, R.D., Müller, A.H.E., Frey, H., 2022. Rational design of tapered multiblock copolymers for thermoplastic elastomers. Prog. Polym. Sci. 124, 101488. https://doi.org/10.1016/J.PROGPOLYMSCI.2021.101488.

 
Sun, X., Bai, B., 2023. Chemical enhanced oil recovery. In: Recovery Improvement Gulf Professional Publishing, pp. 185–279. https://doi.org/10.1016/B978-0-12-823363-4.00003-0.
 

Sun, J., Chang, X., Lv, K., Wang, J., Zhang, F., Jin, J., Zhou, X., Dai, Z., 2021. Environmentally friendly and salt-responsive polymer brush based on lignin nanoparticle as fluid-loss additive in water-based drilling fluids. Colloids Surfaces A Physicochem. Eng. Asp. 621, 126482. https://doi.org/10.1016/J.COLSURFA.2021.126482.

 

Sun, J., Zhang, X., Lv, K., Liu, J., Xiu, Z., Wang, Z., Huang, X., Bai, Y., Wang, J., Jin, J., 2022. Synthesis of hydrophobic associative polymers to improve the rheological and filtration performance of drilling fluids under high temperature and high salinity conditions. J. Pet. Sci. Eng. 209. https://doi.org/10.1016/j.petrol.2021.109808.

 

Takasu, A., Hayashi, T., 2015. Cationic ring-opening polymerization. Encycl. Polym. Nanomater. 324–329. https://doi.org/10.1007/978-3-642-29648-2_176.

 
Thakur, V.K., 2018. Biopolymer grafting: synthesis and properties. In: Biopolymer Grafting: Synthesis and Properties. Elsevier. https://doi.org/10.1016/C2015-0-06910-6.
 

Tikadar, D., Gujarathi, A.M., Guria, C., 2021a. Safety, economics, environment and energy based criteria towards multi-objective optimization of natural gas sweetening process: an industrial case study. J. Nat. Gas Sci. Eng. 95, 104207. https://doi.org/10.1016/J.JNGSE.2021.104207.

 

Tikadar, D., Gujarathi, A.M., Guria, C., Al Toobi, S., 2021b. Retrofitting and simultaneous multi-criteria optimization with enhanced performance of an industrial gas-cleaning plant using economic, process safety, and environmental objectives. J. Clean. Prod. 319, 128652. https://doi.org/10.1016/J.JCLEPRO.2021.128652.

 
Utracki, L.A., Wilkie, C.A., 2014. Polymer Blends Handbook, Polymer Blends Handbook. Springer Netherlands. https://doi.org/10.1007/978-94-007-6064-6.
 
van Herk, A.M., 2013. Chemistry and technology of emulsion polymerisation. In: Chem. Technol. Emuls. Polym, second ed. https://doi.org/10.1002/9781118638521
 
Van Oort, E., Ahmad, M., Spencer, R., Legacy, N., 2015. ROP Enhancement in Shales through Osmotic Processes. SPE/IADC Drill. Conf. Proc, pp. 1795–1819. https://doi.org/10.2118/173138-MS.
 

Wan, T., Yao, J., Zishun, S., Li, W., Juan, W., 2011. Solution and drilling fluid properties of water soluble AM–AA–SSS copolymers by inverse microemulsion. J. Pet. Sci. Eng. 78, 334–337. https://doi.org/10.1016/J.PETROL.2011.06.027.

 

Wang, X., Zhang, Y., Lv, F., Shen, B., Zhang, R., Zhou, F., Chu, P.K., 2011. Cross-linked polystyrene microspheres as density-reducing agent in drilling fluid. J. Pet. Sci. Eng. 78, 529–533. https://doi.org/10.1016/J.PETROL.2011.06.016.

 

Wang, H., Ge, Y., Shi, L., 2017. Technologies in deep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020). Nat. Gas. Ind. B 4, 319–326. https://doi.org/10.1016/J.NGIB.2017.09.001.

 

Wang, W., Lu, W., Goodwin, A., Wang, H., Yin, P., Kang, N.G., Hong, K., Mays, J.W., 2019. Recent advances in thermoplastic elastomers from living polymerizations: macromolecular architectures and supramolecular chemistry. Prog. Polym. Sci. 95, 1–31. https://doi.org/10.1016/J.PROGPOLYMSCI.2019.04.002.

 

Wang, H., Li, M., Wu, J., Yan, P., Liu, G., Sun, K., Mou, Q., Zhang, C., 2022. Nano-SiO2/hydroxyethyl cellulose nanocomposite used for 210 ℃ sedimentation control of petroleum drilling fluid. J. Polym. Eng. 42, 163–171. https://doi.org/10.1515/POLYENG-2021-0188/MACHINEREADABLECITATION/RIS.

 

Wang, J., Chen, M., Li, X., Yin, X., Zheng, W., 2022. Effect of synthetic quadripolymer on rheological and filtration properties of bentonite-free drillingfluid at high temperature. Crystals 12, 257. https://doi.org/10.3390/CRYST12020257.

 

William, J.K.M., Ponmani, S., Samuel, R., Nagarajan, R., Sangwai, J.S., 2014. Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids. J. Pet. Sci. Eng. 117, 15–27. https://doi.org/10.1016/J.PETROL.2014.03.005.

 

Wypych, G., 2022. Handbook of Rheological Additives, Handbook of Rheological Additives. ChemTec Publishing. https://doi.org/10.1016/C2021-0-00266-2.

 

Xia, S., Zhang, L., Davletshin, A., Li, Z., You, J., Tan, S., 2020. Application of polysaccharide biopolymer in petroleum recovery. Polymers 12, 1860. https://doi.org/10.3390/POLYM12091860.

 
Xian, J.L., Oren, A.S., 2012. Polymeric and Self Assembled Hydrogels: from Fundamental Understanding to Applications. Monogr. Supramol. Chem., Monographs in Supramolecular Chemistry. https://doi.org/10.1039/9781849735629.
 

Xie, G., Luo, P., Deng, M., Su, J., Wang, Z., Gong, R., Xie, J., Deng, S., Duan, Q., 2017. Intercalation behavior of branched polyethyleneimine into sodium bentonite and its effect on rheological properties. Appl. Clay Sci. 141, 95–103. https://doi.org/10.1016/J.CLAY.2017.02.018.

 

Xie, B., Ting, L., Zhang, Y., Liu, C., 2018. Rheological properties of bentonite-free water-based drilling fluids with novel polymer viscosifier. J. Pet. Sci. Eng. 164, 302–310. https://doi.org/10.1016/J.PETROL.2018.01.074.

 

Xu, L., Xu, G., Liu, T., Chen, Y., Gong, H., 2013a. The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydr. Polym. 92, 516–522. https://doi.org/10.1016/J.CARBPOL.2012.09.082.

 

Xu, L., Xu, L., Dai, W.S., Tsuboi, T., Xie, H. De, 2013b. Preparation and characterization of a novel fluoro-silicone acrylate copolymer by semi-continuous emulsion polymerization. J. Fluor. Chem. 153, 68–73. https://doi.org/10.1016/J.JFLUCHEM.2013.05.017.

 

Xu, J., Hu, Y., Chen, Q., Chen, D., Lin, J., Bai, X., 2017a. Preparation of hydrophobic carboxymethyl starches and analysis of their properties as fluid loss additives in drilling fluids. Starch - Stärke 69, 1600153. https://doi.org/10.1002/STAR.201600153.

 

Xu, J., Qiu, Z., Huang, W., Zhao, X., 2017b. Preparation and performance properties of polymer latex SDNL in water-based drilling fluids for drilling troublesome shale formations. J. Nat. Gas Sci. Eng. 37, 462–470. https://doi.org/10.1016/J.JNGSE.2016.11.064.

 

Xu, J.G., Qiu, Z., Zhao, X., Zhang, Y., Li, G., Huang, W., 2018. Application of nano-polymer emulsion for inhibiting shale self-imbibition in water-based drilling fluids. J. Surfactants Deterg. 21, 155–164. https://doi.org/10.1002/JSDE.12019.

 

Xuan, Y., Jiang, G., Li, Y., Yang, L., Zhang, X., 2015. Biodegradable oligo (poly-L-lysine) as a high-performance hydration inhibitor for shale. RSC Adv. 5, 84947–84958. https://doi.org/10.1039/C5RA16003K.

 

Yahya, S., Kee, K.E., Puad, M.J.M., Ismail, M.C., 2022. Evaluation on steel corrosion in water-based drilling fluids: inhibitors and scale involvement. J. Pet. Sci. Eng. 211, 110127. https://doi.org/10.1016/J.PETROL.2022.110127.

 

Yamak, H.B., 2013. Emulsion polymerization: effects of polymerization variables on the properties of vinyl acetate based emulsion polymers. Polym. Sci. https://doi.org/10.5772/51498.

 

Yang, J., Lei, Z., Dong, B., Ai, Z., Peng, L., Xie, G., 2022. Synthesis and plugging performance of poly (MMA-BA-ST) as a plugging agent in oil-based drilling fluid. Energies 15, 7626. https://doi.org/10.3390/EN15207626.

 
Zangari, G., 2017. Chemistry, molecular sciences and chemical engineering. In: Chemistry, Molecular Sciences and Chemical Engineering. Elsevier Inc., pp. 1–20
 

Zevallos, M.A.L., Candler, J., Hooker Wood, J., Reuter, L.M., 1996. Synthetic-based fluids enhance environmental and drilling performance in deepwater locations. Proc. SPE Int. Pet. Conf. Exhib. Mex. 235–242. https://doi.org/10.2118/35329-MS.

 

Zhang, Y., Dubé, M.A., 2018. Green emulsion polymerization technology. Adv. Polym. Sci. 280, 65–100. https://doi.org/10.1007/12_2017_8/FIGURES/15.

 

Zhang, X., Jiang, G., Dong, T., Wang, L., Li, X., Wang, G., 2018. An amphoteric polymer as a shale borehole stabilizer in water-based drilling fluids. J. Pet. Sci. Eng. 170, 112–120. https://doi.org/10.1016/J.PETROL.2018.06.051.

 

Zhang, J.R., Xu, M.D., Christidis, G.E., Zhou, C.H., 2020. Clay minerals in drilling fluids: functions and challenges. Clay Miner. 55, 1–11. https://doi.org/10.1180/CLM.2020.10.

 

Zhang, Z., Nie, X., Wang, F., Chen, G., Huang, W.Q., Xia, L., Zhang, W.J., Hao, Z.Y., Hong, C.Y., Wang, L.H., You, Y.Z., 2020. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat. Commun. 11, 3654. https://doi.org/10.1038/s41467-020-17474-0.

 

Zhang, C., Luo, C., Ye, L., Zhang, H., Xiang, H., Zhang, C., Luo, C., Ye, L., Zhang, H., Xiang, H., 2021. Research and application of anti-collapse lubricant compound polyalcohol for water-based drilling fluid. Open J. Yangtze Oil Gas 7, 1–12. https://doi.org/10.4236/OJOGAS.2022.71001.

 

Zhao, X., Li, D., Zhu, H., Ma, J., An, Y., 2022. Advanced developments in environmentally friendly lubricants for water-based drilling fluid: a review. RSC Adv. 12, 22853–22868. https://doi.org/10.1039/D2RA03888A.

 

Zheng, Y., Asif, A., Amiri, A., Polycarpou, A.A., 2021. Graphene-based aqueous drilling muds as efficient, durable, and environmentally friendly alternatives for oil-based muds. ACS Appl. Nano Mater. 4, 1243–1251. https://doi.org/10.1021/ACSANM.0C02852/SUPPL_FILE/AN0C02852_SI_001.PDF.

 

Zhong, F., Pan, C.Y., 2022. Dispersion polymerization versus emulsifier-free emulsion polymerization for nano-object fabrication: a comprehensive comparison. Macromol. Rapid Commun. 43, 2100566. https://doi.org/10.1002/MARC.202100566.

 

Zhong, H., Qiu, Z., Huang, W., Cao, J., 2012. Poly (oxypropylene)-amidoamine modified bentonite as potential shale inhibitor in water-based drilling fluids. Appl. Clay Sci. 67 (68), 36–43. https://doi.org/10.1016/J.CLAY.2012.06.002.

 

Zhong, H., Shen, G., Yang, P., Qiu, Z., Jin, J., Xing, X., 2018. Mitigation of lost circulation in oil-based drilling fluids using oil absorbent polymers. Materials 11, 2020. https://doi.org/10.3390/MA11102020.

 

Zhong, H., Shen, G., Qiu, Z., Lin, Y., Fan, L., Xing, X., Li, J., 2019. Minimizing the HTHP filtration loss of oil-based drilling fluid with swellable polymer microspheres. J. Pet. Sci. Eng. 172, 411–424. https://doi.org/10.1016/J.PETROL.2018.09.074.

 

Zhong, H., Gao, X., Qiu, Z., Sun, B., Huang, W., Li, J., 2020a. Insight into β-cyclodextrin polymer microsphere as a potential filtration reducer in water-based drilling fluids for high temperature application. Carbohydr. Polym. 249, 116833. https://doi.org/10.1016/J.CARBPOL.2020.116833.

 

Zhong, H., Gao, X., Qiu, Z., Zhao, C., Zhang, X., Guo, B., Li, G., 2020b. Formulation and evaluation of β-cyclodextrin polymer microspheres for improved HTHP filtration control in water-based drilling fluids. J. Mol. Liq. 313, 113549. https://doi.org/10.1016/J.MOLLIQ.2020.113549.

Petroleum Science
Pages 475-518
Cite this article:
Davoodi S, Al-Shargabi M, Wood DA, et al. Synthetic polymers: A review of applications in drilling fluids. Petroleum Science, 2024, 21(1): 475-518. https://doi.org/10.1016/j.petsci.2023.08.015

76

Views

0

Downloads

28

Crossref

28

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 23 December 2022
Revised: 29 May 2023
Accepted: 16 August 2023
Published: 19 August 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return