In order to settle the issues of poor rheology for drilling fluids in Antarctica, it is important to develop an agent that can availably address these challenges. For this reason, a rheological regulator (HSCN) of drilling fluid was synthesized by modifying montmorillonite with composite modifiers (DODMAC and CPL). The structure of HSCN was characterized by X-ray diffraction, contact angle, infrared spectroscopy and scanning electron microscopy. And HSCN properties were also evaluated by experiments such as colloidal rate, rheology, viscosity-temperature characteristics and corrosion test. Finally, the mechanism of HSCN was investigated. 2% HSCN can enhance the improvement rate of yield point for drilling fluid at −55 °C by 167%, and the colloidal rate of drilling fluid is 90.4% after 24 h. The corrosion of the three rubbers is weak, with a maximum mass increase of only 0.014 g and a maximum outside diameter increase of 0.04 cm. The mechanism study shows that the staggered lapping between HSCN lamellar units forms an infinitely extended reticular structure. The structure is mainly formed by the electrostatic attraction between HSCN particles, hydrogen bonding, physical adsorption and entanglement between the long carbon chains in HSCN. The formation of this structure can effectively enhance the rheology properties of drilling fluids. This research gives a direction for the investigation of drilling fluids suitable for Antarctic conditions, which is greatly sense for accelerating the efficient exploitation of oil and gas in Antarctica.
Ajieh, M.U., Amenaghawon, N.A., Owebor, K., Orugba, O.H., Bassey, E.B., 2023. Effect of excess viscosifier and fluid loss control additive on the rheological characteristics of water-based drilling fluid. Petrol. Sci. Technol. 41 (14), 1434-1455. https://doi.org/10.1080/10916466.2022.2092636.
Augustin, L., Panichi, S., Frascati, F., 2007. EPICA Dome C 2 drilling operations: performances, difficulties, results. Ann. Glaciol. 47, 68-72. https://doi.org/10.3189/172756407786857767.
Bentley, C.R., Koci, B.R., 2007. Drilling to the beds of the Greenland and Antarctic ice sheets: a review. Ann. Glaciol. 47, 1-9. https://doi.org/10.3189/172756407786857695.
Fujita, S., Yamada, T., Naruse, R., Mae, S., Azuma, N., Fujii, Y., 1994. Drilling fluid for Dome F project in Antarctica. Mem. Natl. Inst. Polar Res. Special Issue 49, 347-357.
Geng, T., Qiu, Z.S., Zhao, C.H., Zhang, L., Zhao, X., 2019. Rheological study on the invert emulsion fluids with organoclay at high aged temperatures. Colloid. Surface. Physicochem. Eng. Aspect. 573, 211-221. https://doi.org/10.1016/j.colsurfa.2019.04.056.
Gosink, T.A., Koci, B.R., Kelley, J.J., 1993. A queous ethanol as an ice-drilling fluid. J. Glaciol. 39 (133), 703-705. https://doi.org/10.3189/S0022143000016610.
Gosink, T.A., Kelley, J.J., Tumeo, M.A., Koci, B., Stanford, K., Zagorodnov, V., Ehlert, G., 1994. Fluids for use in deep ice-core drilling. Mem. Natl. Inst. Polar Res. Special Issue 49, 335-346. http://purl.org/coar/resource_type/c_6501.
Gosink, T.A., Kelley, J.J., Koci, B.R., Burton, T.W., Tumeo, M.A., 1991. Butyl acetate, an alternative drilling fluid for deep ice-coring projects. J. Glaciol. 37 (125), 170-176. https://doi.org/10.3189/S0022143000042921.
Grootes, P.M., Steig, E.J., Stuiver, M., 1994. Taylor Ice Dome study 1993-1994: an ice core to bedrock. Antarct. J. U. S. 29, 79-81.
Hu, Z.Y., Shi, G.T., Talalay, P., Li, Y.S., Fan, X.P., An, C.L., Zhang, N., Li, C.J., Liu, K., Yu, J.H., Yang, C., Li, B., Liu, B.W., Ma, T.M., 2021. Deep ice-core drilling to 800 m at Dome A in East Antarctica. Ann. Glaciol. 62 (85–86), 293-304. https://doi.org/10.1017/aog.2021.2.
Huang, N., Lv, K.H., Sun, J.S., Liu, J.P., Wang, J.T., Wang, Z.L., 2023. Study on the low-temperature rheology of polar drilling fluid and its regulation method. Gels 9 (2), 168. https://doi.org/10.3390/gels9020168.
Huang, X.B., Jiang, G.C., He, Y.B., An, Y.X., Zhang, S., 2016. Improvement of rheological properties of invert drilling fluids by enhancing interactions of water droplets using hydrogen bonding linker. Colloid. Surface. Physicochem. Eng. 506, 467-475. https://doi.org/10.1016/j.colsurfa.2016.07.011.
Huang, X.B., Sun, J.S., Lv, K.H., Liu, J.P., Shen, H.K., 2018. An alternative method to enhance w/o emulsion stability using modified dimer acid and its application in oil based drilling fluids. RSC Adv. 8 (46), 26318-26324. https://doi.org/10.1039/C8RA02293C.
Johnsen, S.J., Hansen, S.B., Sheldon, S.G., Dahl-Jensen, D., Steffensen, J.P., Augustin, L., Zagorodnov, V., 2007. The Hans Tausen drill: design, performance, further developments and some lessons learned. Ann. Glaciol. 47, 89-98. https://doi.org/10.3189/172756407786857686.
Johnson, J.A., Kuhl, T., Boeckmann, G., Gibson, C., Jetson, J., Meulemans, Z., Souney, J.M., 2021. Drilling operations for the South Pole Ice core (SPICE core) project. Ann. Glaciol. 62 (84), 75-88. https://doi.org/10.1017/aog.2020.64.
Kim, J.Y., Song, J.Y., Lee, E.J., Park, S.K., 2003. Rheological properties and microstructures of Carbopol gel network system. Colloid Polym. Sci. 281 (7), 614-623. https://doi.org/10.1007/s00396-002-0808-7.
Kuhl, T., Gibson, C., Johnson, J., Boeckmann, G., Moravec, E., Slawny, K., 2021. Agile sub-ice geological (ASIG) drill development and Pirrit Hills field project. Ann. Glaciol. 62 (84), 53-66. https://doi.org/10.1017/aog.2020.59.
Li, J.C., Yang, P., Guan, J., Sun, Y.D., Kuang, X.B., Chen, S.S., 2014. A new type of whole oil-based drilling fluid. Petrol. Explor. Dev. 41 (4), 538-544. https://doi.org/10.1016/S1876-3804(14)60064-1.
Liu, N., Xu, H.W., Yang, Y., Han, L.L., Wang, L.L., Talalay, P., 2016. Physicochemical properties of potential low-temperature drilling fluids for deep ice core drilling. Cold. Reg. Sci. 129, 45-50. https://doi.org/10.1016/j.coldregions.2016.06.004.
Madkour, T.M., Fadl, S., Dardir, M.M., Mekewi, M.A., 2016. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids. Egypt. J. Pet. 25 (2), 281-291. https://doi.org/10.1016/j.ejpe.2015.09.004.
Mellor, M., 1960. Temperature gradients in the Antarctic ice sheet. J. Glaciol. 3 (28), 773-782. https://doi.org/10.3189/S0022143000018086.
Morgan, V.I., Wehrle, E., Fleming, A., Richardson, M., Elcheikh, A., Brand, R., 1994. Technical aspects of deep ice drilling on Law Dome. Mem. Natl. Inst. Polar Res. Special Issue 49, 78-86. http://purl.org/coar/resource_type/c_6501.
Motoyama, H., Takahashi, A., Tanaka, Y., Shinbori, K., Miyahara, M., Yoshimoto, T., Yoshise, Y., 2021. Deep ice core drilling to a depth of 3035.22 m at Dome Fuji, Antarctica in 2001–07. Ann. Glaciol. 62 (85/86), 212-222. https://doi.org/10.1017/aog.2020.84.
Mulvaney, R., Alemany, O., Possenti, P., 2007. The Berkner Island (Antarctica) ice-core drilling project. Ann. Glaciol. 47, 115-124. https://doi.org/10.3189/172756407786857758.
Murtaza, M., Alarifi, S.A., Kamal, M.S., Onaizi, S.A., Al-Ajmi, M., Mahmoud, M., 2021. Experimental investigation of the rheological behavior of an oil-based drilling fluid with rheology modifier and oil wetter additives. Molecules 26 (16), 4877. https://doi.org/10.3390/molecules26164877.
Noah, A.Z., Semary, M.A., Youssef, A.M., El-Safty, M.A., 2017. Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles. Egypt. J. Pet. 26 (1), 33-40. https://doi.org/10.1016/j.ejpe.2016.03.002.
Power, D., Zamora, M., 2003. Drilling fluid yield stress: measurement techniques for improved understanding of critical drilling fluid parameters. AADE Technical Conference 45, 1-3, Houston.
Rohling, E.J., Grant, K., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, C., Kucera, M., 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci. 2 (7), 500-504. https://doi.org/10.1038/ngeo557.
Segad, M., Hanski, S., Olsson, U., Ruokolainen, J., Åkesson, T., Jonsson, B., 2012. Microstructural and swelling properties of Ca and Na montmorillonite: (in situ) observations with cryo-TEM and SAXS. J. Phys. Chem. C 116 (13), 7596-7601. https://doi.org/10.1021/jp300531y.
Shi, H., Jiang, G.C., Wang, K., Li, X.L., 2018. Synthesis of a Dendrimer as rheological modifier for deep-water drilling fluids and study of its interaction with organo-clay at different temperatures. Key Eng. Mater. 792, 111-118. https://doi.org/10.4028/www.scientific.net/KEM.792.111.
Shturmakov, A.J., Lebar, D.A., Bentley, C.R., 2014. DISC drill and replicate coring system: a new era in deep ice drilling engineering. Ann. Glaciol. 55 (68), 189-198. https://doi.org/10.3189/2014AoG68A017.
Soares, A.A., de Oliveira Freitas, J.C., de Araujo Melo, D.M., Braga, R.M., Amaral-Machado, L., Santos, P.H.S., Soares, L.W.O., 2017. Cement slurry contamination with oil-based drilling fluids. J. Petrol. Sci. Eng. 158, 433-440. https://doi.org/10.1016/j.petrol.2017.08.064.
Sun, J.S., Wang, Z.L., Liu, J.P., Lv, K.H., Huang, X.B., Zhang, X.F., Huang, N., 2022. Research progress and development direction of low-temperature drilling fluid for Antarctic region. Petrol. Explor. Dev. 49 (5), 1161-1168. https://doi.org/10.1016/S1876-3804(22)60340-9.
Talalay, P., Liu, N., Yang, Y., Xu, H.W., Sysoev, M., Fan, X.P., 2019. Ice drills recovery using chemical deicers. POLAR. SCI. 19, 49-56. https://doi.org/10.1016/j.polar.2018.08.005.
Talalay, P., Yang, C., Cao, P.L., Wang, R.S., Zhang, N., Fan, X.P., Yang, Y., Sun, Y.H., 2015. Ice-core drilling problems and solutions. Cold Reg. Sci. Technol. 120, 1-20. https://doi.org/10.1016/j.coldregions.2015.08.014.
Talalay, P., Hu, Z.Y., Xu, H.W., Yu, D.H., Han, L.L., Han, J.J., Wang, L.L., 2014. Environmental considerations of low-temperature drilling fluids. Ann. Glaciol. 55 (65), 31-40. https://doi.org/10.3189/2014AoG65A226.
Talalay, P., Li, Y., Augustin, L., Clow, G.D., Hong, J., Lefebvre, E., Ritz, C., 2020. Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica. Cryosphere 14 (11), 4021-4037. https://doi.org/10.5194/tc-14-4021-2020.
Talalay, P.G., 2007. Dimethyl siloxane oils as an alternative borehole fluid. Ann. Glaciol. 47, 82-88. https://doi.org/10.3189/172756407786857785.
Turner, J., Marshall, G.J., Clem, K., Colwell, S., Phillips, T., Lu, H., 2020. Antarctic temperature variability and change from station data. Int. J. Climatol. 40 (6), 2986-3007. https://doi.org/10.1002/joc.6378.
Vasiliev, N.I., Talalay, P.G., 2011. Twenty years of drilling the deepest hole in ice. Sci. Drill. 11, 41-45. https://doi.org/10.2204/iodp.sd.11.05.2011.
Werner, B., Myrseth, V., Saasen, A., 2017. Viscoelastic properties of drilling fluids and their influence on cuttings transport. J. Petrol. Sci. Eng. 156, 845-851. https://doi.org/10.1016/j.petrol.2017.06.063.
Wu, L., Liao, L., Lv, G., 2015. Influence of interlayer cations on organic intercalation of montmorillonite. J. Colloid Interface Sci. 454 (4), 1-7. https://doi.org/10.1016/j.jcis.2015.04.021.
Yılmaz, O., Baranak, M., Güner, F.S., Erciyes, A.T., 2005. The usage of linseed oil-based polyurethanes as a rheological modifier. J. Appl. Polym. Sci. 98 (3), 1032-1035. https://doi.org/10.1002/app.22223.
Zhang, N., An, C.L., Fan, X.P., Shi, G.T., Li, C.J., Liu, J.F., Li, Y.S., 2014. Chinese first deep ice-core drilling project DK-1 at Dome A, Antarctica (2011-2013): progress and performance. Ann. Glaciol. 55 (68), 88-98. https://doi.org/10.3189/2014AoG68A006.
Zhou, Y., Pu, X.L., 2022. Lipophilic rheology modifier and its application in oil-based drilling fluids. J. Appl. Polym. 139 (3), 51502. https://doi.org/10.1002/app.51502.
Zhuang, G.Z., Zhang, Z.P., Jaber, M., 2019a. Organoclays used as colloidal and rheological additives in oil-based drilling fluids: an overview. Appl. Clay Sci. 177, 63-81. https://doi.org/10.1016/j.clay.2019.05.006.
Zhuang, G.Z., Gao, J.H., Peng, S.M., Zhang, Z.P., 2019b. Synergistically using layered and fibrous organoclays to enhance the rheological properties of oil-based drilling fluids. Appl. Clay Sci. 172, 40-48. https://doi.org/10.1016/j.clay.2019.02.014.
Zhuang, G.Z., Zhang, Z.P., Peng, S.M., Gao, J.H., Pereira, F.A., Jaber, M., 2019c. The interaction between surfactants and montmorillonite and its influence on the properties of organo-montmorillonite in oil-based drilling fluids. Clay Clay Miner. 67, 190-208. https://doi.org/10.1007/s42860-019-00017-0.
Zhuang, G.Z., Wu, H., Zhang, H.X., Zhang, Z.P., Zhang, X.M., Liao, L.B., 2017. Rheological properties of organo-palygorskite in oil-based drilling fluids aged at different temperatures. Appl. Clay Sci. 137, 50-58. https://doi.org/10.1016/j.clay.2016.12.015.