AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Promising applications of human-derived saliva biomarker testing in clinical diagnostics

Mengyuan Song1,Hao Bai1,Ping Zhang2Xuedong Zhou2Binwu Ying1( )
Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China

These authors contributed equally: Mengyuan Song, Hao Bai.

Show Author Information

Abstract

Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.

References

1

Chen, Y., Liu, F. & Lee, L. P. Quantitative and ultrasensitive in situ immunoassay technology for SARS-CoV-2 detection in saliva. Sci. Adv. 8, eabn3481 (2022).

2

Ning, B. et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci. Adv. 7, 19–23 (2021).

3

Wang, Y. et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl. Med 7, 1–8 (2015).

4

Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, 1–16 (2022).

5

Thomas, A. J., Woo, B., Nettle, D., Spelke, E. & Saxe, R. Early concepts of intimacy: young humans use saliva sharing to infer close relationships. Science (1979) 375, 311–315 (2022).

6

Pico-Alfonso, M. A., Garcia-Linares, M. I., Celda-Navarro, N., Herbert, J. & Martinez, M. Changes in cortisol and dehydroepiandrosterone in women victims of physical and psychological intimate partner violence. Biol. Psychiatry 56, 233–240 (2004).

7

Yoon, Y.-J. et al. Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat. Commun. 13, 1–16 (2022).

8

Peng, X. et al. Oral microbiota in human systematic diseases. Int J. Oral. Sci. 14, 1–11 (2022).

9

Zhang, C. Z. et al. Saliva in the diagnosis of diseases. Int J. Oral. Sci. 8, 133–137 (2016).

10

Pedersen, A. M. L., Sorensen, C. E., Proctor, G. B., Carpenter, G. H. & Ekstrom, J. Salivary secretion in health and disease. J. Oral. Rehabil. 45, 730–746 (2018).

11

Mese, H. & Matsuo, R. Salivary secretion, taste and hyposalivation. J. Oral. Rehabil. 34, 711–723 (2007).

12

Vining, R. F. & McGinley, R. A. The measurement of hormones in saliva: Possibilities and pitfalls. J. Steroid Biochem 27, 81–94 (1987).

13

Lee, V. M. & Linden, R. W. An olfactory-submandibular salivary reflex in humans. Exp. Physiol. 77, 221–224 (1992).

14

Tiwari, M. Science behind human saliva. J. Nat. Sci. Biol. Med 2, 53–58 (2011).

15

Kaczor-Urbanowicz, K. E. et al. Clinical validity of saliva and novel technology for cancer detection. Biochim Biophys. Acta Rev. Cancer 49–59, 2019 (1872).

16

Gao, X., Jiang, S., Koh, D. & Hsu, C.-Y. S. Salivary biomarkers for dental caries. Periodontol 2000 70, 128–141 (2016).

17

Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

18

Ogawa, Y. et al. Proteomic analysis of two types of exosomes in human whole saliva. Biol. Pharm. Bull. 34, 13–23 (2011).

19

Crook, M. Differential diagnosis by laboratory medicine. J. Clin. Pathol. 57, 112–112 (2004).

20

Brasier, N., Osthoff, M., de Ieso, F. & Eckstein, J. Next-Generation digital biomarkers for tuberculosis and antibiotic stewardship: Perspective on novel molecular digital biomarkers in sweat, saliva, and exhaled breath. J. Med Internet Res 23, e25907 (2021).

21

Huang, X. et al. Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. npj Flex. Electron. 6, 10 (2022).

22

Zhong, B., Jiang, K., Wang, L. & Shen, G. Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 9, 2103257 (2022).

23

Ray, P. & Steckl, A. J. Label-free optical detection of multiple biomarkers in sweat, plasma, urine, and saliva. ACS Sens 4, 1346–1357 (2019).

24

Langie, S. A. S. et al. Salivary DNA methylation profiling: aspects to consider for biomarker identification. Basic Clin. Pharm. Toxicol. 121, 93–101 (2017).

25

Nishitani, S., Parets, S. E., Haas, B. W. & Smith, A. K. DNA methylation analysis from saliva samples for epidemiological studies. Epigenetics 13, 352–362 (2018).

26

Bakulski, K. M. et al. Prenatal particulate matter exposure is associated with saliva dna methylation at age 15: applying cumulative dna methylation scores as an exposure biomarker. Toxics 9, 262 (2021).

27

Dawes, K. et al. Saliva DNA methylation detects nascent smoking in adolescents. J. Child Adolesc. Psychopharmacol. 29, 535–544 (2019).

28

Ramakrishnan, P., S, S. & Kundu, P. Methylation status of p16INK4a and p14ARF gene in saliva of smokeless tobacco users: a pilot descriptive study. J. Oral. Maxillofac. Surg. Med Pathol. 33, 221–226 (2021).

29

Philibert, R., Dogan, M., Beach, S. R. H., Mills, J. A. & Long, J. D. AHRR methylation predicts smoking status and smoking intensity in both saliva and blood DNA. Am. J. Med. Genet., Part B: Neuropsychiatr. Genet. 183, 51–60 (2020).

30

Dawes, K. et al. The relationship of smoking to cg05575921 methylation in blood and saliva DNA samples from several studies. Sci. Rep. 11, 1–12 (2021).

31

Abraham, J. E. et al. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genomics 5, 19 (2012).

32

Bearer, E. L. & Mulligan, B. S. Epigenetic Changes Associated with Early Life Experiences: Saliva, A Biospecimen for DNA Methylation Signatures. Curr. Genomics 19, 676–698 (2018).

33

Middleton, L. Y. M. et al. Saliva cell type DNA methylation reference panel for epidemiological studies in children. Epigenetics 17, 161–177 (2022).

34

Rounge, T. B. et al. Genome-wide DNA methylation in saliva and body size of adolescent girls. Epigenomics 8, 1495–1505 (2016).

35

Moccia, C. et al. Birthweight DNA methylation signatures in infant saliva. Clin. Epigenetics 13, 1–13 (2021).

36

Dunstan, J. et al. Associations of LEP, CRH, ICAM-1, and LINE-1 methylation, measured in saliva, with waist circumference, body mass index, and percent body fat in mid-childhood. Clin. Epigenetics 9, 29 (2017).

37

Murata, Y. et al. Evaluation of the usefulness of saliva for DNA methylation analysis in cohort studies. Neuropsychopharmacol. Rep. 39, 301–305 (2019).

38

Patel, M., Gawande, M. N., Chaudhary, M. S. & Hande, A. H. DNA methylation patterns in saliva of tobacco users with high-risk oral potentially malignant disorders. J Pharm Res Int 129–137 https://doi.org/10.9734/jpri/2021/v33i32b31754 (2021).

39

Kaliyaperumal, S. & Sankarapandian, S. Evaluation of p16 hypermethylation in oral submucous fibrosis: A quantitative and comparative analysis in buccal cells and saliva using real-time methylation-specific polymerase chain reaction. South Asian J. Cancer 05, 073–079 (2016).

40

de Martinez, J. H. C. et al. Effect of smoking on the DNA methylation pattern of the SOCS1 promoter in epithelial cells from the saliva of patients with chronic periodontitis. J. Periodontol. 90, 1279–1286 (2019).

41

Yamaguchi, T. et al. Orthognathic surgery induces genomewide changes longitudinally in DNA methylation in saliva. Oral. Dis. 25, 508–514 (2019).

42

Chuang, Y. H. et al. Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Med 9, 76 (2017).

43

Rahbar, E. et al. Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes. Clin. Epigenetics 10, 46 (2018).

44

Hearn, N. L., Chiu, C. L. & Lind, J. M. Comparison of DNA methylation profiles from saliva in Coeliac disease and non-coeliac disease individuals. BMC Med Genomics 13, 16 (2020).

45

Thomas, M. et al. Increased BDNF methylation in saliva, but not blood, of patients with borderline personality disorder. Clin. Epigenetics 10, 109 (2018).

46

Wilmot, B. et al. Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. J. Child Psychol. Psychiatry 57, 152–160 (2016).

47

Hearn, N. L., Coleman, A. S., Ho, V., Chiu, C. L. & Lind, J. M. Comparing DNA methylation profiles in saliva and intestinal mucosa. BMC Genomics 20, 1–9 (2019).

48

Hong, S. R. et al. DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. Forensic Sci. Int Genet 29, 118–125 (2017).

49

Ho Lee, M. et al. Application of droplet digital PCR method for DNA methylation-based age prediction from saliva. Leg. Med 54, 101992 (2022).

50

Alghanim, H., Balamurugan, K. & McCord, B. Development of DNA methylation markers for sperm, saliva and blood identification using pyrosequencing and qPCR/HRM. Anal. Biochem 611, 113933 (2020).

51

Lee, H. Y., Jung, S. E., Lee, E. H., Yang, W. I. & Shin, K. J. DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. Forensic Sci. Int Genet 24, 75–82 (2016).

52

Ghai, M., Naidoo, N., Evans, D. L. & Kader, F. Identification of novel semen and saliva specific methylation markers and its potential application in forensic analysis. Forensic Sci. Int Genet 49, 102392 (2020).

53

Silva, D. S. B. S. et al. Developmental validation studies of epigenetic DNA methylation markers for the detection of blood, semen and saliva samples. Forensic Sci. Int Genet 23, 55–63 (2016).

54

Watanabe, K., Taniguchi, K., Toyomane, K. & Akutsu, T. A new approach for forensic analysis of saliva-containing body fluid mixtures based on SNPs and methylation patterns of nearby CpGs. Forensic Sci. Int Genet 56, 102624 (2022).

55

Senst, A., Dressler, J., Edelmann, J. & Kohl, M. Development of a qPCR assay for detection of secretion types: Identification of semen, vaginal secretion and saliva using tissue-specific methylation patterns. Rechtsmedizin 29, 94–100 (2019).

56

Jung, S. E. et al. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci. Int Genet 38, 1–8 (2019).

57

Hamano, Y., Manabe, S., Morimoto, C., Fujimoto, S. & Tamaki, K. Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: Exploratory application for cigarette butts. Sci. Rep. 7, 10444 (2017).

58

Oka, H., Dwi Ariani, M., Akazaki, T., Miyauchi, M. & Kitagawa, M. Some tips on age estimation using DNA methylation in saliva samples as an index across the Japanese and Indonesian ethnicities. Leg. Med 56, 102042 (2022).

59

Staunstrup, N. H. et al. Saliva as a blood alternative for genome-wide dna methylation profiling by methylated dna immunoprecipitation (Medip) sequencing. Epigenomes 1, 14 (2017).

60

Machan, M. et al. The impact of concussion, sport, and time in season on saliva telomere length in healthy athletes. Front Sports Act. Living 4, 816607 (2022).

61

Lahnert, P. An improved method for determining telomere length and its use in assessing age in blood and saliva. Gerontology 51, 352–356 (2005).

62

Geronimus, A. T. et al. Coming up short: Comparing venous blood, dried blood spots & saliva samples for measuring telomere length in health equity research. PLoS One 16, e0255237 (2021).

63

Hummel, E. M. et al. Cell-free DNA release under psychosocial and physical stress conditions. Transl. Psychiatry 8, 236 (2018).

64

Weerakoon, K. G. et al. Droplet digital PCR diagnosis of human schistosomiasis: parasite cell-free DNA detection in diverse clinical samples. J. Infect. Dis. 216, 1611–1622 (2017).

65

Xi, Y. et al. The implications of gene mutations in salivary DNA for noninvasive diagnosis of head and neck cancer with a focus on oral cancer. Oral. Oncol. 130, 105924 (2022).

66

Li, F. et al. Ultra-short circulating tumor dna (UsctDNA) in plasma and saliva of non-small cell lung cancer (NSCLC) patients. Cancers (Basel) 12, 1–15 (2020).

67

Ding, S. et al. Saliva-derived cfDNA is applicable for EGFR mutation detection but not for quantitation analysis in non-small cell lung cancer. Thorac. Cancer 10, 1973–1983 (2019).

68

Eun, Y. G., Yoon, Y. J., Won, K. Y. & Lee, Y. C. Circulating tumor DNA in saliva in an orthotopic head and neck cancer mouse model. Anticancer Res 40, 191–199 (2020).

69

Hanna, G. J. et al. Salivary HPV DNA informs locoregional disease status in advanced HPV-associated oropharyngeal cancer. Oral. Oncol. 95, 120–126 (2019).

70

Li, Y. et al. RNA profiling of cell-free saliva using microarray technology. J. Dent. Res 83, 199–203 (2004).

71

Zimmermann, B. G., Noh, J. P. & Wong, D. T. Genomic targets in saliva. in. Ann. N. Y. Acad. Sci. 1098, 184–191 (2007).

72

Arantes, L. M. R. B. et al. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev. Mol. Diagn. 18, 85–112 (2018).

73

Elashoff, D. et al. Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol. Biomark. Prev. 21, 664–672 (2012).

74

Li, Y. et al. Salivary transcriptome diagnostics for oral cancer detection. Clin. Cancer Res. 10, 8442–8450 (2004).

75

Michailidou, E. et al. Salivary mRNA markers having the potential to detect oral squamous cell carcinoma segregated from oral leukoplakia with dysplasia. Cancer Epidemiol. 43, 112–118 (2016).

76

Martin, J. L. Validation of reference genes for oral cancer detection panels in a prospective blinded cohort. PLoS One 11, e0158462 (2016).

77

Cheng, Y. S. L. et al. Chronic periodontitis can affect the levels of potential oral cancer salivary mRNA biomarkers. J. Periodontal Res 52, 428–437 (2017).

78

Horváth, J. et al. Oral health may affect the performance of mRNA-based saliva biomarkers for oral squamous cell cancer. Pathol. Oncol. Res. 24, 833–842 (2018).

79

Li, F. et al. Discovery and validation of salivary extracellular RNA biomarkers for noninvasive detection of gastric cancer. Clin. Chem. 64, 1513–1521 (2018).

80

Xu, F. & Jiang, M. Evaluation of predictive role of carcinoembryonic antigen and salivary mRNA biomarkers in gastric cancer detection. Medicine 99, e20419 (2020).

81

Bentata, M. et al. Splicing factor transcript abundance in saliva as a diagnostic tool for breast cancer. Genes (Basel) 11, 1–12 (2020).

82

Yang, J., Xiang, C. & Liu, J. Clinical significance of combining salivary mRNAs and carcinoembryonic antigen for ovarian cancer detection. Scand. J. Clin. Lab Invest 81, 39–45 (2021).

83

Gu, X., He, J., Ji, G. & Shen, L. Combined use of circulating tumor cells and salivary mRNA to detect non-small-cell lung cancer. Med. (U. S.) 99, e19097 (2020).

84

Uzoma, I. C., Taiwo, I. A., Nna, E. O., Durosinmi, M. A. & Ukaejiofo, E. O. Detection of BCR-ABL1 fusion gene transcripts in the saliva of Nigerian patients with chronic myeloid leukemia. Niger. J. Clin. Pr. 22, 51–55 (2019).

85

Wang, Z., Zhang, S. H., Zhou, D., Zhao, S. M. & Li, C. T. Messenger RNA profiling for forensic body fluid identification: research and applications. J. Forensic Med. 29, 368–374 (2013).

86

Watanabe, K., Akutsu, T., Takamura, A. & Sakurada, K. Practical evaluation of an RNA-based saliva identification method. Sci. Justice 57, 404–408 (2017).

87

Liu, B. et al. Development of a multiplex system for the identification of forensically relevant body fluids. Forensic Sci Int Genet 47, (2020).

88

Hanson, E., Ingold, S., Haas, C. & Ballantyne, J. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing. Forensic Sci. Int Genet 34, 206–221 (2018).

89

Ypma, R. J. F. et al. Calculating LRs for presence of body fluids from mRNA assay data in mixtures. Forensic Sci. Int Genet 52, 102455 (2021).

90

Blackman, S. et al. Developmental validation of the ParaDNA® Body Fluid ID System—A rapid multiplex mRNA-profiling system for the forensic identification of body fluids. Forensic Sci. Int Genet 37, 151–161 (2018).

91

Kulstein, G., Pably, P., Fürst, A., Wiegand, P. & Hadrys, T. “The acid test”—validation of the ParaDNA® Body Fluid ID Test for routine forensic casework. Int J. Leg. Med 133, 751–757 (2019).

92

Hu, S. et al. Preclinical validation of salivary biomarkers for primary Sjögren’s syndrome. Arthritis Care Res (Hoboken) 62, 1633–1638 (2010).

93

Luo, D., Chen, Y., Zhou, N., Li, T. & Wang, H. Blockade of Th17 response by IL-38 in primary Sjögren’s syndrome. Mol. Immunol. 127, 107–111 (2020).

94

Aqrawi, L. A., Jensen, J. L., Fromreide, S., Galtung, H. K. & Skarstein, K. Expression of NGAL-specific cells and mRNA levels correlate with inflammation in the salivary gland, and its overexpression in the saliva, of patients with primary Sjögren’s syndrome. Autoimmunity 333–343 https://doi.org/10.1080/08916934.2020.1795140 (2020).

95

Wang, X. et al. Progenitor cell niche senescence reflects pathology of the parotid salivary gland in primary Sjögren’s syndrome. Rheumatol. (U. Kingd.) 59, 3003–3013 (2020).

96

Swaminathan, V., Prakasam, S., Puri, V. & Srinivasan, M. Role of salivary epithelial toll-like receptors 2 and 4 in modulating innate immune responses in chronic periodontitis. J. Periodontal Res 48, 757–765 (2013).

97

AlQallaf, H. et al. Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis. PLoS One 13, e0200231 (2018).

98

Kluknavská, J. et al. Expression of selected inflammatory proteins and metalloproteinases in periodontitis. Eur. Rev. Med Pharm. Sci. 26, 1825–1831 (2022).

99

Detzen, L., Chen, S. C. Y., Cheng, B., Papapanou, P. N. & Lalla, E. Increased levels of soluble CD163 in periodontitis patients. J. Clin. Periodontol. 44, 585–590 (2017).

100

Fagin, U., Nerbas, L., Vogl, B. & Jabs, W. J. Analysis of BZLF1 mRNA detection in saliva as a marker for active replication of Epstein-Barr virus. J. Virol. Methods 244, 11–16 (2017).

101

Angelova, S., Salim, A., Kiselova-Kaneva, Y., Ivanova, D. & Peev, S. Association of mRNA Levels of IL6, MMP-8, GSS in saliva and pyelonephritis in children. Molecules 25, 85 (2020).

102

Fan, X., Luo, Y., Fan, Q. & Zheng, W. Reduced expression of PARK2 in manganese-exposed smelting workers. Neurotoxicology 62, 258–264 (2017).

103

Chen, X., Liang, H., Zhang, J., Zen, K. & Zhang, C. Y. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3, 28–37 (2012).

104

Hicks, S. D., Ignacio, C., Gentile, K. & Middleton, F. A. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr. 16, 52 (2016).

105

Hicks, S. D. et al. Saliva MicroRNA differentiates children with autism from peers with typical and atypical development. J. Am. Acad. Child Adolesc. Psychiatry 59, 296–308 (2020).

106

Sehovic, E. et al. Identification of developmental disorders including autism spectrum disorder using salivary miRNAs in children from Bosnia and Herzegovina. PLoS One 15, e0232351 (2020).

107

Rosato, A. J. et al. Salivary microRNAs identified by small RNA sequencing and machine learning as potential biomarkers of alcohol dependence. Epigenomics 11, 739–749 (2019).

108

Di Pietro, V. et al. Unique diagnostic signatures of concussion in the saliva of male athletes: the Study of Concussion in Rugby Union through MicroRNAs (SCRUM). Br. J. Sports Med 55, 1395–1404 (2021).

109

Sembler-Møller, M. L., Belstrøm, D., Locht, H. & Pedersen, A. M. L. Distinct microRNA expression profiles in saliva and salivary gland tissue differentiate patients with primary Sjögren’s syndrome from non-Sjögren’s sicca patients. J. Oral. Pathol. Med 49, 1044–1052 (2020).

110

Min, N. et al. Circulating salivary miRNA hsa-miR-221 as clinically validated diagnostic marker for hand, foot, and mouth disease in pediatric patients. EBioMedicine 31, 299–306 (2018).

111

Han, P., Bartold, P. M., Salomon, C. & Ivanovski, S. Salivary small extracellular vesicles associated miRNAs in periodontal status—A pilot study. Int J. Mol. Sci. 21, 2809 (2020).

112

Mead, E. A. et al. Non-Invasive microRNA profiling in saliva can serve as a biomarker of alcohol exposure and its effects in humans. Front Genet 12, 804222 (2021).

113

Wang, Z. et al. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine(®) System (Ion PGMTM System). Forensic Sci. Int Genet 20, 140–146 (2016).

114

Layne, T. R. et al. microRNA detection in blood, urine, semen, and saliva stains after compromising treatments. J. Forensic Sci. 64, 1831–1837 (2019).

115

Barrett, S. P. & Salzman, J. Circular RNAs: analysis, expression and potential functions. Development 143, 1838–1847 (2016).

116

Ren, X., Du, Y., You, L. & Zhao, Y. Potential functions and implications of circular RNA in gastrointestinal cancer. Oncol. Lett. 14, 7016–7020 (2017).

117

Lee, E. C. S. et al. The roles of circular RNAs in human development and diseases. Biomed. Pharmacother. 111, 198–208 (2019).

118

Bahn, J. H. et al. The landscape of MicroRNA, piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem. 61, 221–230 (2015).

119

Saaoud, F. et al. Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharm. Ther. 220, 107715 (2021).

120

Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet 20, 675–691 (2019).

121

Wang, W. et al. Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 7, e6831 (2019).

122

Zhao, S.-Y., Wang, J., Ouyang, S.-B., Huang, Z.-K. & Liao, L. Salivary circular RNAs Hsa_Circ_0001874 and Hsa_Circ_0001971 as novel biomarkers for the diagnosis of oral squamous cell carcinoma. Cell Physiol. Biochem 47, 2511–2521 (2018).

123

Wang, M. et al. Diagnostic value of CircRNAs as Potential Biomarkers in Oral Squamous Cell Carcinoma: a Meta-Analysis. Front Oncol. 11, 693284 (2021).

124

Kristensen, L. S., Jakobsen, T., Hager, H. & Kjems, J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol. 19, 188–206 (2022).

125

Song, F., Luo, H., Xie, M., Zhu, H. & Hou, Y. Microarray expression profile of circular RNAs in human body fluids. Forensic Sci. Int Genet Suppl. Ser. 6, e55–e56 (2017).

126

Liu, B. et al. Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int J. Leg. Med 133, 1321–1331 (2019).

127

Liu, B. et al. Development of a multiplex system for the identification of forensically relevant body fluids. Forensic Sci. Int Genet 47, 102312 (2020).

128

Tang, H., Wu, Z., Zhang, J. & Su, B. Salivary lncRNA as a potential marker for Oral squamous cell carcinoma diagnosis. Mol. Med Rep. 7, 761–766 (2013).

129

Xie, Z. et al. Salivary HOTAIR and PVT1 as novel biomarkers for early pancreatic cancer. Oncotarget 7, 25408–25419 (2016).

130

Xie, Z. et al. Lnc-PCDH9-13:1 Is a Hypersensitive and Specific Biomarker for Early Hepatocellular Carcinoma. EBioMedicine 33, 57–67 (2018).

131

Shieh, T. M. et al. Lack of salivary long non‐coding rna xist expression is associated with increased risk of oral squamous cell carcinoma: A cross‐sectional study. J. Clin. Med 10, 4622 (2021).

132

Chandra Gupta, S. & Nandan Tripathi, Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int. J. Cancer 140, 1955–1967 (2017).

133

Rodrigues, A. C. et al. NEAT1 and MALAT1 are highly expressed in saliva and nasopharyngeal swab samples of COVID-19 patients. Mol. Oral. Microbiol 36, 291–294 (2021).

134

Amado, F. M. L., Ferreira, R. P. & Vitorino, R. One decade of salivary proteomics: Current approaches and outstanding challenges. Clin. Biochem 46, 506–517 (2013).

135

Yan, W. et al. Systematic comparison of the human saliva and plasma proteomes. Proteom. Clin. Appl 3, 116–134 (2009).

136

Chu, H. W. et al. Identification of salivary biomarkers for oral cancer detection with untargeted and targeted quantitative proteomics approaches. Mol. Cell Proteom. 18, 1796–1806 (2019).

137

Figura, M. et al. Proteomic Profile of Saliva in Parkinson’s Disease Patients: A Proof of Concept Study. Brain Sci. 11, 661 (2021).

138

Figura, M. A.-O. & Friedman, A. A.-O. & Neurol Neurochir, P. In search of Parkinson’s disease biomarkers - is the answer in our mouths? A systematic review of the literature on salivary biomarkers of Parkinson’s disease. Neurol. Neurochir. Pol. 54, 14–20 (2020).

139

Loo, J. A., Yan, W., Ramachandran, P. & Wong, D. T. Comparative human salivary and plasma proteomes. J. Dent. Res 89, 1016–1023 (2010).

140

Peyrot Des Gachons, C. & Breslin, P. A. Salivary amylase: digestion and metabolic syndrome. Curr. Diab Rep. 16, 102 (2016).

141

Pigman, W. & Reid, A. J. The organic compounds and enzymes of human saliva. J. Am. Dent. Assoc. 45, 326–338 (1952).

142

Raus, F. J., Tarbet, W. J. & Miklos, F. L. Salivary enzymes and calculus formation. J. Periodontal Res 3, 232–235 (1968).

143

Humphrey, S. P. & Williamson, R. T. A review of saliva: normal composition, flow, and function. J. Prosthet. Dent. 85, 162–169 (2001).

144

Tripoliti, E. E. et al. Point-of-care testing devices for heart failure analyzing blood and saliva samples. IEEE Rev. Biomed. Eng. 13, 17–31 (2020).

145

Bermejo-Pareja, F., Antequera, D., Vargas, T., Molina, J. A. & Carro, E. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurol. 10, 108 (2010).

146

Kaczor-Urbanowicz, K. E. et al. Identification of salivary protein biomarkers for orthodontically induced inflammatory root resorption. Proteomics Clin Appl 11, (2017).

147

Li, F. et al. Characterization of human salivary extracellular RNA by next-generation sequencing. Clin. Chem. 64, 1085–1095 (2018).

148

Kumar, S. et al. Biofunctionalized nanostructured zirconia for biomedical application: a smart approach for oral cancer detection. Adv. Sci. (Weinh.) 2, 1500048 (2015).

149

Wang, J., Zhao, Y., Ren, J. J. & Xu, Y. Pepsin in saliva as a diagnostic biomarker in laryngopharyngeal reflux: a meta-analysis. Eur. Arch. Oto-Rhino-Laryngol. 275, 671–678 (2018).

150

Wang, C. P. et al. Saliva pepsin detection and proton pump inhibitor response in suspected laryngopharyngeal reflux. Laryngoscope 129, 709–714 (2019).

151

Hayat, J. O. et al. Pepsin in saliva for the diagnosis of gastro-oesophageal reflux disease. Gut 64, 373–380 (2015).

152

Wang, Y. J. et al. Salivary pepsin as an intrinsic marker for diagnosis of sub-types of gastroesophageal reflux disease and gastroesophageal reflux disease-related disorders. J. Neurogastroenterol. Motil. 26, 74–84 (2020).

153

Dy, F., Amirault, J., Mitchell, P. D. & Rosen, R. Salivary pepsin lacks sensitivity as a diagnostic tool to evaluate extraesophageal reflux disease. J. Pediatr. 177, 53–58 (2016).

154

Guo, Z. H., Wu, H., Jiang, J. L. & Zhang, C. Pepsin in saliva as a diagnostic marker for gastroesophageal reflux disease: a meta-analysis. Med. Sci. Monit. 24, 9509–9516 (2018).

155

Selvaraju, V., Venkatapoorna, C. M. K., Babu, J. R. & Geetha, T. Salivary amylase gene copy number is associated with the obesity and inflammatory markers in children. Diabetes Metab. Syndr. Obes. 13, 1695–1701 (2020).

156

Awasthi, N. Role of salivary biomarkers in early detection of oral squamous cell carcinoma. Indian J. Pathol. Microbiol 60, 464–468 (2017).

157

Sommerland, H., Ullman, M., Jennische, E., Skottner, A. & Oldfors, A. Muscle regeneration. The effect of hypophysectomy on cell proliferation and expression of insulin-like growth factor-I. Acta Neuropathol. 78, 264–269 (1989).

158

Shah, V. S., Pareikh, D. & Manjunatha, B. S. Salivary alpha-amylase-biomarker for monitoring type II diabetes. J. Oral. Maxillofac. Pathol. 25, 441–445 (2021).

159

Tiongco, R. E. G., Arceo, E. S., Rivera, N. S., Flake, C. C. D. & Policarpio, A. R. Estimation of salivary glucose, amylase, calcium, and phosphorus among non-diabetics and diabetics: Potential identification of non-invasive diagnostic markers. Diabetes Metab. Syndrome: Clin. Res. Rev. 13, 2601–2605 (2019).

160

Kheirmand Parizi, M., Akbari, H., Malek-Mohamadi, M., Kheirmand Parizi, M. & Kakoei, S. Association of salivary levels of immunoglobulin-a and amylase with oral-dental manifestations in patients with controlled and non-controlled type 2 diabetes. BMC Oral. Health 19, 175 (2019).

161

Dowd, F. J. Saliva and dental caries. Dent. Clin. North Am. 43, 579–597 (1999).

162

Perera, S., Uddin, M. & Hayes, J. A. Salivary lysozyme: a noninvasive marker for the study of the effects of stress of natural immunity. Int J. Behav. Med 4, 170–178 (1997).

163

Yang, Y. et al. Self perceived work related stress and the relation with salivary IgA and lysozyme among emergency department nurses. Occup. Environ. Med 59, 836–841 (2002).

164

Chojnowska, S., Ptaszynska-Sarosiek, I., Kepka, A., Knas, M. & Waszkiewicz, N. Salivary Biomarkers of Stress, Anxiety and Depression. J. Clin. Med 10, 517 (2021).

165

Deng, K., Pelekos, G., Jin, L. & Tonetti, M. S. Diagnostic accuracy of a point-of-care aMMP-8 test in the discrimination of periodontal health and disease. J. Clin. Periodontol. 48, 1051–1065 (2021).

166

Lähteenmäki, H. et al. Ammp-8 point-of-care/chairside oral fluid technology as a rapid, non-invasive tool for periodontitis and peri-implantitis screening in a medical care setting. Diagnostics 10, (2020).

167

Podzimek, S., Vondrackova, L., Duskova, J., Janatova, T. & Broukal, Z. Salivary markers for periodontal and general diseases. Dis. Markers 2016, 9179632 (2016).

168

Chambers, D. A. et al. A longitudinal study of aspartate aminotransferase in human gingival crevicular fluid. J. Periodontal Res 26, 65–74 (1991).

169

Ranadheer, E. et al. The relationship between salivary IgA levels and dental caries in children. J. Indian Soc. Pedod. Prev. Dent. 29, 106–112 (2011).

170

Mousavizadeh A et al. The relationship between salivary and serum IgA and IgG levels and dental caries in adults. Clin Lab 67, https://doi.org/10.7754/Clin.Lab.2020.201209 (2021).

171

Haeri-Araghi, H., Zarabadipour, M., Safarzadeh-Khosroshahi, S. & Mirzadeh, M. Evaluating the relationship between dental caries number and salivary level of IgA in adults. J. Clin. Exp. Dent. 10, e66–e69 (2018).

172

Tsukinoki, K. et al. Detection of cross-reactive immunoglobulin A against the severe acute respiratory syndrome-coronavirus-2 spike 1 subunit in saliva. PLoS One 16, 10 (2021).

173

Calheira, M. C. et al. Immunoassay standardization for the detection of immunoglobulin A (IgA) against Porphyromonas gingivalis antigens in saliva of individuals with and without leprosy. AMB Express 11, 7 (2021).

174

Leicht, C. A., Goosey-Tolfrey, V. L. & Bishop, N. C. Exercise intensity and its impact on relationships between salivary immunoglobulin A, saliva flow rate and plasma cortisol concentration. Eur. J. Appl Physiol. 118, 1179–1187 (2018).

175

Riis, J. L. et al. Correspondence between cytomegalovirus immunoglobulin-G levels measured in saliva and serum. Front Immunol. 11, 11 (2020).

176

Kaplan, B. et al. Immunoglobulin free light chains in saliva: a potential marker for disease activity in multiple sclerosis. Clin. Exp. Immunol. 192, 7–17 (2018).

177

Gao, Z. et al. Abnormal sialylation and fucosylation of saliva glycoproteins: Characteristics of lung cancer-specific biomarkers. Curr. Res. Pharmacol. Drug Discov. 3, 100079 (2022).

178

Ragusa, A. et al. Differential glycosylation levels in saliva from patients with lung or breast cancer: a preliminary assessment for early diagnostic purposes. Metabolites 11, 566 (2021).

179

Yang, J. et al. Abnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer. Glycoconj. J. 37, 373–394 (2020).

180

Yang, J. et al. Alternations of N-glycans recognized by Phaseolus vulgaris leucoagglutinin in the saliva of patients with breast cancer. Neoplasma 68, 994–1004 (2021).

181

Shu, J. et al. Identification of N- and O-linked glycans recognized by AAL in saliva of patients with atrophic gastritis and gastric cancer. Cancer Biomark. 22, 669–681 (2018).

182

Zanotti, L. et al. Epidermal growth factor receptor detection in serum and saliva as a diagnostic and prognostic tool in oral cancer. Laryngoscope 127, E408–e414 (2017).

183

Das, N. et al. Proteomics analysis of tears and saliva from Sjogren’s syndrome patients. Front Pharm. 12, 787193 (2021).

184

Grant, M. M. et al. Discovery, validation, and diagnostic ability of multiple protein-based biomarkers in saliva and gingival crevicular fluid to distinguish between health and periodontal diseases. J. Clin. Periodontol. https://doi.org/10.1111/jcpe.13630 (2022).

185

Gleerup, H. S., Hasselbalch, S. G. & Simonsen, A. H. Biomarkers for Alzheimer’s disease in saliva: a systematic review. Dis. Markers 2019, 4761054 (2019).

186

Gleerup, H. S., Jensen, C. S., Høgh, P., Hasselbalch, S. G. & Simonsen, A. H. Lactoferrin in cerebrospinal fluid and saliva is not a diagnostic biomarker for Alzheimer’s disease in a mixed memory clinic population. EBioMedicine 67, 103361 (2021).

187

Jacobs, R. et al. Host biomarkers detected in saliva show promise as markers for the diagnosis of pulmonary tuberculosis disease and monitoring of the response to tuberculosis treatment. Cytokine 81, 50–56 (2016).

188

Tsai, C. M. et al. Use of saliva sample to detect C-reactive protein in children with pneumonia. Pediatr. Pulmonol. 55, 2457–2462 (2020).

189

Lin, G. C. et al. Directed Transport of CRP Across In Vitro Models of the Blood-Saliva Barrier Strengthens the Feasibility of Salivary CRP as Biomarker for Neonatal Sepsis. Pharmaceutics 13, 256 (2021).

190

Galhardo, L. F. et al. Inflammatory markers in saliva for diagnosis of sepsis of hospitalizes patients. Eur. J. Clin. Invest 50, e13219 (2020).

191

Monib, K. M. E., El-Fallah, A. A. & Salem, R. M. Inflammatory markers in acne vulgaris: Saliva as a novel diagnostic fluid. J. Cosmet. Dermatol 21, 1280–1285 (2022).

192

Corey-Bloom, J. et al. Levels of Interleukin-6 in saliva, but not plasma, correlate with clinical metrics in Huntington’s disease patients and healthy control subjects. Int J. Mol. Sci. 21, 6363 (2020).

193

Lee, S. H. et al. A photothermal biosensor for detection of C-reactive protein in human saliva. Sens Actuators B Chem. 246, 471–476 (2017).

194

Leonardi, A. A. et al. Silicon nanowire luminescent sensor for cardiovascular risk in saliva. J. Mater. Sci.: Mater. Electron. 31, 10–17 (2020).

195

Hu, W. et al. C-reaction protein detection in human saliva by nanoplasmonic color imaging. J. Biomed. Nanotechnol. 15, 1724–1733 (2019).

196

Macchia, E. et al. Selective single-molecule analytical detection of C-reactive protein in saliva with an organic transistor. Anal. Bioanal. Chem. 411, 4899–4908 (2019).

197

Chen, X. et al. Electrochemical methods for detection of biomarkers of Chronic Obstructive Pulmonary Disease in serum and saliva. Biosens. Bioelectron. 142, 111453 (2019).

198

Aydin, S. et al. Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients: hormonal changes can have a major effect on seizure disorders. Mol. Cell Biochem 328, 49–56 (2009).

199

Bauer, F. E., Ghatei, M. A., Zintel, A. & Bloom, S. R. Galanin: hydrokinetic action on salivary glands in man. Aliment Pharm. Ther. 3, 591–596 (1989).

200

Calvi, J. L. et al. Measurement of cortisol in saliva: a comparison of measurement error within and between international academic-research laboratories. BMC Res Notes 10, 1–6 (2017).

201

Dawidson, I., Blom, M., Lundeberg, T., Theodorsson, E. & Angmar-Månsson, B. Neuropeptides in the saliva of healthy subjects. Life Sci. 60, 269–278 (1996).

202

Gann, P. H. & Giovanazzi, S. Van Horn, L., Branning, A. & Chatterton, J. Saliva as a medium for investigating intra- and interindividual differences in sex hormone levels in premenopausal women. Cancer Epidemiol. Biomark. Prev. 10, 59–64 (2001).

203

Gröschl, M. et al. Identification of leptin in human saliva. J. Clin. Endocrinol. Metab. 86, 5234–5239 (2001).

204

Gröschl, M. et al. Identification of ghrelin in human saliva: production by the salivary glands and potential role in proliferation of oral keratinocytes. Clin. Chem. 51, 997–1006 (2005).

205

Hurtado, M. D. et al. Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion. J. Neurosci. 33, 18368–18380 (2013).

206

Landman, A. D., Sanford, L. M., Howland, B. E., Dawes, C. & Pritchard, E. T. Testosterone in human saliva. Experientia 32, 940–941 (1976).

207

Ozbay, Y. et al. Obestatin is present in saliva: Alterations in obestatin and ghrelin levels of saliva and serum in ischemic heart disease. J. Biochem Mol. Biol. 41, 55–61 (2008).

208

VAKKURI, O. Diurnal rhythm of melatonin in human saliva. Acta Physiol. Scand. 124, 409–412 (1985).

209

Wang, C., Wakelin, K., White, J. & Wood, P. J. Salivary androgens in hirsutism: Are they of use in routine evaluation? Ann. Clin. Biochem 23, 590–595 (1986).

210

White-Traut, R. et al. Detection of salivary oxytocin levels in lactating women. Dev. Psychobiol. 51, 367–373 (2009).

211

Williams, J. S. & Williams, G. H. 50Th Anniversary of Aldosterone. J. Clin. Endocrinol. Metab. 88, 2364–2372 (2003).

212

Zolotukhin, S. Metabolic hormones in saliva: origins and functions. Oral. Dis. 19, 219–229 (2013).

213

Gozansky, W. S., Lynn, J. S., Laudenslager, M. L. & Kohrt, W. M. Salivary cortisol determined by enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic hypothalamic–pituitary–adrenal axis activity. Clin. Endocrinol. (Oxf.) 63, 336–341 (2005).

214

Rosenfeld, D. et al. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci. Adv. 6, eaaz3734 (2020).

215

Noushad, S. et al. Physiological biomarkers of chronic stress: a systematic review. Int J. Health Sci. 15, 45–59 (2021).

216

Illescas-Montes, R. et al. Application of salivary biomarkers in the diagnosis of fibromyalgia. Diagnostics (Basel) 11, 63 (2021).

217

Bastin, P., Maiter, D. & Gruson, D. [Salivary cortisol testing: preanalytic and analytic aspects]. Ann. Biol. Clin. (Paris) 76, 393–405 (2018).

218

Backlund, N. et al. Reference intervals of salivary cortisol and cortisone and their diagnostic accuracy in Cushing’s syndrome. Eur. J. Endocrinol. 182, 569–582 (2020).

219

Vrbanovic, E., Lapic, I., Rogic, D. & Alajbeg, I. Z. Changes in salivary oxidative status, salivary cortisol, and clinical symptoms in female patients with temporomandibular disorders during occlusal splint therapy: a 3-month follow up. BMC Oral. Health 19, 100 (2019).

220

Neupane, S. P., Virtej, A., Myhren, L. E. & Bull, V. H. Biomarkers common for inflammatory periodontal disease and depression: a systematic review. Brain Behav. Immun. Health 21, 100450 (2022).

221

Caicedo Mera, J. C., Cardenas Molano, M. A., Garcia Lopez, C. C., Acevedo Triana, C. & Martinez Cotrina, J. Discussions and perspectives regarding oxytocin as a biomarker in human investigations. Heliyon 7, e08289 (2021).

222

Lussier, D., Cruz-Almeida, Y. & Ebner, N. C. Musculoskeletal pain and brain morphology: oxytocin’s potential as a treatment for chronic pain in aging. Front Aging Neurosci. 11, 338 (2019).

223

Walum, H. & Young, L. J. The neural mechanisms and circuitry of the pair bond. Nat. Rev. Neurosci. 19, 643–654 (2018).

224

Carter, C. S. et al. Is oxytocin ‘nature’s medicine’? Pharm. Rev. 72, 829–861 (2020).

225

Thomas, S. J. & Larkin, T. Cognitive distortions in relation to plasma cortisol and oxytocin levels in major depressive disorder. Front Psychiatry 10, 971 (2019).

226

Ziegler, T. E. Measuring peripheral oxytocin and vasopressin in nonhuman primates. Am. J. Primatol. 80, e22871 (2018).

227

Nous, A. & Engelborghs, S. & Smolders, I. Melatonin levels in the Alzheimer’s disease continuum: a systematic review. Alzheimers Res Ther. 13, 52 (2021).

228

Kennaway, D. J. A critical review of melatonin assays: Past and present. J. Pineal Res 67, e12572 (2019).

229

Sundberg, I. et al. Daytime melatonin levels in saliva are associated with inflammatory markers and anxiety disorders. Psychoneuroendocrinology 112, 104514 (2020).

230

Touitou, Y., Auzeby, A., Camus, F. & Djeridane, Y. Daily profiles of salivary and urinary melatonin and steroids in healthy prepubertal boys. J. Pediatr. Endocrinol. Metab. 22, 1009–1015 (2009).

231

Nijakowski, K., Surdacki, M. & Sobieszczanska, M. Salivary melatonin changes in oncological patients: a systematic review. Metabolites 12, 439 (2022).

232

Chang, W. P. & Lin, C. C. Relationships of salivary cortisol and melatonin rhythms to sleep quality, emotion, and fatigue levels in patients with newly diagnosed lung cancer. Eur. J. Oncol. Nurs. 29, 79–84 (2017).

233

Farahani, H., Alaee, M., Amri, J., Baghinia, M. R. & Rafiee, M. Serum and saliva concentrations of biochemical parameters in men with prostate cancer and benign prostate hyperplasia. Lab Med 51, 243–251 (2020).

234

Mitova, N. & Rashkova, M. Sex hormones in the saliva and periodontal health of children in puberty. J. Imab 25, 2817–2821 (2019).

235

Liu, J. et al. Quantification of 10 steroid hormones in human saliva from Chinese adult volunteers. J. Int. Med. Res. 46, 1414–1427 (2018).

236

Kaczor-Urbanowicz, K. E. et al. Saliva diagnostics – Current views and directions. Exp. Biol. Med 242, 459–472 (2016).

237

Ceccato, F. & Boscaro, M. Cushing’s syndrome: screening and diagnosis. High. Blood Press Cardiovasc Prev. 23, 209–215 (2016).

238

Keevil, B. G. et al. Salivary testosterone measurement by liquid chromatography tandem mass spectrometry in adult males and females. Ann. Clin. Biochem 51, 368–378 (2014).

239

Ugur, K. & Aydin, S. Saliva and blood asprosin hormone concentration associated with obesity. Int J. Endocrinol. 2019, 8 (2019).

240

Arevalo, B. et al. Simultaneous determination of four fertility-related hormones in saliva using disposable multiplexed immunoplatforms coupled to a custom-designed and field-portable potentiostat. Anal. Methods 13, 3471–3478 (2021).

241

Xu, B. et al. Simultaneous quantitative analysis of seven steroid hormones in human saliva: a novel method based on O-ethylhydroxylamine hydrochloride as derivatization reagent. Rapid Commun. Mass Spectrom. 36, 10 (2022).

242

Dame, Z. T. et al. The human saliva metabolome. Metabolomics 11, 1864–1883 (2015).

243

Zhou, J., Hu, H. & Huang, R. A pilot study of the metabolomic profiles of saliva from female orthodontic patients with external apical root resorption. Clin. Chim. Acta 478, 188–193 (2018).

244

Rzeznik, M. et al. Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy. PLoS One 12, e0182767 (2017).

245

Ohshima, M., Sugahara, K., Kasahara, K. & Katakura, A. Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncol. Rep. 37, 2727–2734 (2017).

246

Ladva, C. N. et al. Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with potential for air toxics detection. J. Breath. Res 12, 016008 (2018).

247

Hyun, K. A., Gwak, H., Lee, J., Kwak, B. & Jung, H. Il. Salivary exosome and cell-free DNA for cancer detection. Micromachines 9, 340 (2018).

248

Michael, A. et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral. Dis. 16, 34–38 (2010).

249

Machida, T. et al. MicroRNAs in salivary exosome as potential biomarkers of aging. Int J. Mol. Sci. 16, 21294–21309 (2015).

250

Rani, K. et al. A novel approach to correlate the salivary exosomes and their protein cargo in the progression of cognitive impairment into Alzheimer’s disease. J. Neurosci. Methods 347, 108980 (2021).

251

Rani, K. et al. Neuronal exosomes in saliva of Parkinson’s disease patients: a pilot study. Parkinsonism Relat. Disord. 67, 21–23 (2019).

252

Cao, Z. et al. Synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neurosci. Lett. 696, 114–120 (2019).

253

Zlotogorski-Hurvitz, A., Dayan, D., Chaushu, G., Salo, T. & Vered, M. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J. Cancer Res Clin. Oncol. 142, 101–110 (2016).

254

Tobón-Arroyave, S. I., Celis-Mejía, N., Córdoba-Hidalgo, M. P. & Isaza-Guzmán, D. M. Decreased salivary concentration of CD9 and CD81 exosome-related tetraspanins may be associated with the periodontal clinical status. J. Clin. Periodontol. 46, 470–480 (2019).

255

Gallo, A., Tandon, M., Alevizos, I. & Illei, G. G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7, 1–5 (2012).

256

Zheng, X. et al. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease. Protein Cell 8, 686–695 (2017).

257

Sun, Y. et al. Comparative proteomic analysis of exosomes and microvesicles in human saliva for lung cancer. J. Proteome Res 17, 1101–1107 (2018).

258

Rani, K. et al. Neuronal exosomes in saliva of Parkinson’s disease patients: a pilot study. Parkinsonism Relat. Disord. 67, 21–23 (2019).

259

Nair, S., Tang, K. D., Kenny, L. & Punyadeera, C. Salivary exosomes as potential biomarkers in cancer. Oral. Oncol. 84, 31–40 (2018).

260

Faur, C. I. et al. Salivary exosomal microRNAs as biomarkers for head and neck cancer detection—a literature review. Maxillofac. Plast. Reconstr. Surg. 43, 19 (2021).

261

Zhan, C., Yang, X., Yin, X. & Hou, J. Exosomes and other extracellular vesicles in oral and salivary gland cancers. Oral. Dis. 26, 865–875 (2020).

262

Deng, Y., Cao, Y., Wang, L. & Ye, D. The role and application of salivary exosomes in Malignant Neoplasms. Cancer Manag Res 13, 5813–5820 (2021).

263

Hoshino, I. The usefulness of microRNA in urine and saliva as a biomarker of gastroenterological cancer. Int J. Clin. Oncol. 26, 1431–1440 (2021).

264

Rastogi, S. et al. The evolving landscape of exosomes in neurodegenerative diseases: Exosomes characteristics and a promising role in early diagnosis. Int J. Mol. Sci. 22, 1–31 (2021).

265

Cohn, W. et al. Integrated multiomics analysis of salivary exosomes to identify biomarkers associated with changes in mood states and fatigue. Int J. Mol. Sci. 23, 5257 (2022).

266

Han, Y., Jia, L., Zheng, Y. & Li, W. Salivary exosomes: Emerging roles in systemic disease. Int J. Biol. Sci. 14, 633–643 (2018).

267

Escandon, P. et al. Unravelling novel roles of salivary exosomes in the regulation of human corneal stromal cell migration and wound healing. Int J. Mol. Sci. 23, 4330 (2022).

268

Zhou, W. et al. Discovery of exosomes from tick saliva and salivary glands reveals therapeutic roles for cxcl12 and il-8 in wound healing at the tick–human skin interface. Front Cell Dev. Biol. 8, 1–22 (2020).

269

Zlotogorski-Hurvitz, A. et al. Human saliva-derived exosomes: comparing methods of isolation. J. Histochemistry Cytochemistry 63, 181–189 (2015).

270

Cheshmi, B. & Cheshomi, H. Salivary exosomes: properties, medical applications, and isolation methods. Mol. Biol. Rep. 47, 6295–6307 (2020).

271

Sun, Y. et al. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal. Chim. Acta 982, 84–95 (2017).

272

Nakamichi, E. et al. Detection of serum/salivary exosomal Alix in patients with oral squamous cell carcinoma. Oral. Dis. 27, 439–447 (2021).

273

Huang, X., Hu, X., Zhao, M. & Zhang, Q. Analysis of salivary exosomal proteins in young adults with severe periodontitis. Oral. Dis. 26, 173–181 (2020).

274

Wang, W. C. et al. Salivary exosome proteomics and bioinformatics analysis in 7,12-Dimethylbenz[a]anthracene-induced oral cancer with radiation therapy—A Syrian Golden Hamster Model. Diagnostics 12, 65 (2022).

275

Imai, A. et al. Comprehensive analysis and comparison of proteins in salivary exosomes of climacteric and adolescent females. Odontology 109, 82–102 (2021).

276

Ogawa, Y., Taketomi, Y., Murakami, M., Tsujimoto, M. & Yanoshita, R. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol. Pharm. Bull. 36, 66–75 (2013).

277

He, L. et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening. Biomedicine Pharmacother. 121, 109553 (2020).

278

Lin, Y. et al. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal carcinoma. Clin. Cancer Res. 25, 3035–3045 (2019).

279

Mi, B. et al. Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6. J. Nanobiotechnology 18, 1–14 (2020).

280

Zlotogorski-Hurvitz, A., Dekel, B. Z., Malonek, D., Yahalom, R. & Vered, M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J. Cancer Res Clin. Oncol. 145, 685–694 (2019).

281

Wu, M. et al. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosens. Bioelectron. 171, 112733 (2021).

282

Zhou, P. et al. A portable point-of-care testing system to diagnose lung cancer through the detection of exosomal miRNA in urine and saliva. Chem. Commun. 56, 8968–8971 (2020).

283

Yu, J. et al. Detection of exosomal PD-L1 RNA in saliva of patients with periodontitis. Front Genet 10, 1–9 (2019).

284

Khurshid, Z. et al. Human saliva collection devices for proteomics: An update. Int. J. Mol. Sci. 17, 846 (2016).

285

Bellagambi, F. G. et al. Saliva sampling: Methods and devices. An overview. TrAC - Trends Anal. Chem. 124, 115781 (2020).

286

Gröschl, M. Saliva: A reliable sample matrix in bioanalytics. Bioanalysis 9, 655–668 (2017).

287

Amado, F., Calheiros-Lobo, M. J., Ferreira, R. & Vitorino, R. Sample treatment for saliva proteomics. in. Adv. Exp. Med. Biol. 1073, 23–56 (2019).

288

Topkas, E., Keith, P., Dimeski, G., Cooper-White, J. & Punyadeera, C. Evaluation of saliva collection devices for the analysis of proteins. Clin. Chim. Acta 413, 1066–1070 (2012).

289

Golatowski, C. et al. Comparative evaluation of saliva collection methods for proteome analysis. Clin. Chim. Acta 419, 42–46 (2013).

290

Justino, A. B., Teixeira, R. R., Peixoto, L. G., Jaramillo, O. L. B. & Espindola, F. S. Effect of saliva collection methods and oral hygiene on salivary biomarkers. Scand. J. Clin. Lab Invest 77, 415–422 (2017).

291

Costa, M. M. et al. Optimization and standardization of human saliva collection for MALDI-TOF MS. Diagnostics 11, 1304 (2021).

292

Chiang, S. H. et al. RNAPro•SAL: A device for rapid and standardized collection of saliva RNA and proteins. Biotechniques 58, 69–76 (2015).

293

Khurshid, Z. et al. Human salivary protein extraction from RNAPro·SALTM, Pure·SALTM, and passive drooling method. Eur. J. Dent. 11, 385–389 (2017).

294

Lim, Y., Totsika, M., Morrison, M. & Punyadeera, C. The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols. Sci. Rep. 7, 8523 (2017).

295

Han, P. & Ivanovski, S. Effect of saliva collection methods on the detection of periodontium-related genetic and epigenetic biomarkers-a pilot study. Int J. Mol. Sci. 20, 4729 (2019).

296

Hughes, S. R. & Chapleau, R. R. Comparing DNA quantity and quality using saliva collection following food and beverage consumption. BMC Res Notes 12, 165 (2019).

297

Tuan, L., Tsm, K., Wns, S., Nazatul, W. & Shahidan, S. Establishment of the collection, storage and preservation methods and their influence on stability of human salivary exosome. J. Biomed. Clin. Sci. 3, 44–52 (2018).

298

Woo, J. S. & Lu, D. Y. Procurement, transportation, and storage of saliva, buccal swab, and oral wash specimens. in. Methods Mol. Biol. 1897, 99–105 (2019).

299

Pramanik, R. et al. Effects of the UK biobank collection protocol on potential biomarkers in saliva. Int J. Epidemiol. 41, 1786–1797 (2012).

300

Guerin, J. S. et al. Molecular Medicine Ireland guidelines for standardized biobanking. Biopreservation Biobanking 8, 3–63 (2010).

301

Oelsner, K. T., Guo, Y., To, S. B. C., Non, A. L. & Barkin, S. L. Maternal BMI as a predictor of methylation of obesity-related genes in saliva samples from preschool-age Hispanic children at-risk for obesity. BMC Genomics 18, 57 (2017).

302

Ho Lee, M. et al. Application of droplet digital PCR method for DNA methylation-based age prediction from saliva. Leg. Med 54, 101992 (2022).

303

Cui, Y. et al. Correlations of salivary and blood glucose levels among six saliva collection methods. Int J. Environ. Res Public Health 19, 4122 (2022).

304

Rosa, N. et al. Protein quality assessment on saliva samples for biobanking purposes. in. Biopreservation Biobanking 14, 289–297 (2016).

305

Nunes, L. A. S., Brenzikofer, R. & Macedo, D. V. Reference intervals for saliva analytes collected by a standardized method in a physically active population. Clin. Biochem 44, 1440–1444 (2011).

306

Ng, V., Koh, D., Fu, Q. & Chia, S. E. Effects of storage time on stability of salivary immunoglobulin A and lysozyme. Clin. Chim. Acta 338, 131–134 (2003).

307

Gröschl, M., Wagner, R., Rauh, M. & Dörr, H. G. Stability of salivary steroids: The influences of storage, food and dental care. Steroids 66, 737–741 (2001).

308

Garde, A. H. & Hansen, Å. M. Long-term stability of salivary cortisol. Scand. J. Clin. Lab Invest 65, 433–436 (2005).

309

Sullivan, R. et al. An optimised saliva collection method to produce high-yield, high-quality RNA for translational research. PLoS One 15, e0229791 (2020).

310

Duarte, D. et al. Evaluation of saliva stability for nmr metabolomics: Collection and handling protocols. Metabolites 10, 1–15 (2020).

International Journal of Oral Science
Article number: 2
Cite this article:
Song M, Bai H, Zhang P, et al. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. International Journal of Oral Science, 2023, 15: 2. https://doi.org/10.1038/s41368-022-00209-w

152

Views

4

Downloads

48

Crossref

43

Web of Science

44

Scopus

Altmetrics

Received: 18 July 2022
Revised: 23 October 2022
Accepted: 03 November 2022
Published: 04 January 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return