AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Invited Article | Open Access

Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum

Frank Surupa,bEric Kuhnerta,bErik Lehmanna,bSimone Heitkämpera,bKevin D. HydecJacques FournierdMarc Stadlera,b( )
Department Microbial Drugs, Helmholtz-Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
German Centre for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
Institute of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
Las Muros, F-09420 Rimont, France
Show Author Information

Abstract

During the course of a screening for novel anti-infective agents from cultures of tropical Xylariaceae originating from French Guiana and Thailand, pronounced antifungal activity was noted in extracts of cultures of Hypoxylon monticulosum. A bioassay-guided fractionation led to the known metabolite sporothriolide as active principle. In addition, three new derivatives of sporothriolide were isolated, for which we propose the trivial names sporothric acid, isosporothric acid and dihydroisosporothric acid. Their chemical structures were elucidated by high-resolution electrospray mass spectrometry in conjunction with two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. From earlier studies on the biogenesis of the chemically similar canadensolides, we postulate that the new compounds were shunt products, rather than biogenetic precursors of sporothriolide. Interestingly, this compound class, as well as strong antifungal activities, was only observed in multiple cultures of H. monticulosum, but not in several hundreds of Hypoxylon cultures studied previously or concurrently. Therefore, sporothriolide production may constitute a species-specific feature with respect to Hypoxylon and the Xylariaceae, although the compound was previously reported from non-related fungal taxa.

References

 
Abate D, Abraham W-R, Meyer H. 1997 Cytochalasins and phytotoxins from the fungus Xylaria obovata. Phytochemistry 44:1443–1448. doi:10.1016/S0031-9422(96)00780-7.
 

Atienza J, Hernandez E, Primo J. 1992. Isolation and identification of ethisolide as an antibiotic product from Penicillium capsulatum. Appl Microbiol Biotechnol. 37:298–300. doi:10.1007/BF00210981.

 

Bills GF, González-Menéndez V, Martín J, Platas G, Fournier J, Peršoh D, Stadler M. 2012. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS ONE. 7:e46687. doi:10.1371/journal.pone.0046687.

 

Bitzer J, Köpcke B, Stadler M, Hellwig V, Ju YM, Seip S, Henkel T. 2007. Accelerated dereplication of natural products, supported by reference libraries. Chimia. 61:332–338. doi:10.2533/chimia.2007.332

 

Bitzer J, Læssøe T, Fournier J, Kummer V, Decock C, Tichy HV, Piepenbring M, Peršoh D, Stadler M. 2008. Affinities of Phylacia and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. Mycol Res. 112:251–270. doi:10.1016/j.mycres.2007.07.004.

 

Brookes D, Tidd BK, Turner WB. 1963. 1028. Avenaciolide, an antifungal lactone from Aspergillus avenaceus. J Chem Soc. 5385–5391. doi:10.1039/jr9630005385.

 

Chesters NCJE, O´Hagan D. 1997. Biosynthesis of the fungal metabolite, piliformic acid (2-hexylidene-3-methylsuccinic acid). J Chem Soc Perkin Trans. 8:927–834.

 

Cooper MA, Shlaes D. 2011. Fix the antibiotics pipeline. Nature. 472:32. doi:10.1038/472032a.

 
Dictionary of natural products on DVD (2013) Dictionary of natural Products on DVD. Boca Raton (FL): CRC Press.
 

Fournier J, Flessa F, Peršoh D, Stadler M. 2011. Three new Xylaria species from Southwestern Europe. Mycol Progr. 10:33–52. doi:10.1007/s11557-010-0671-8.

 

Fournier J, Köpcke B, Stadler M. 2010. New species of Hypoxylon from Western Europe and Ethiopia. Mycotaxon. 113:209–235. doi:10.5248/113.209.

 

Fournier J, Stadler M, Hyde KD, Duong ML. 2010. The new genus Rostrohypoxylon and two new Annulohypoxylon species from Northern Thailand. Fungal Divers. 40:23–36. doi:10.1007/s13225-010-0026-4.

 

Halecker S, Surup F, Kuhnert E, Mohr KI, Brock NL, Dickschat JS, Junker C, Schulz B, Stadler M. 2014. Hymenosetin, a 3-decalinoyltetramic acid antibiotic from cultures of the ash dieback pathogen, Hymenoscyphus pseudoalbidus. Phytochemistry. 100:86–91. doi:10.1016/j.phytochem.2014.01.018.

 
Hayes D. 1982. Intermediates in the biosynthesis of bislactone antibiotics [PhD thesis]. University of Glasgow.
 

Herrmann J, Elnakady YA, Wiedmann RM, Ullrich A, Rohde M, Kazmaier U, Vollmar AM, Müller R. 2012. Pretubulysin: from hypothetical biosynthetic intermediate to potential lead in tumor therapy. Plos ONE. 7:e37416. doi:10.1371/journal.pone.0037416.

 

Isaka M, Chinthanom P, Boonruangprapa T, Rungjindamai N, Pinruan U. 2010. Eremophilane-type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J Nat Prod. 73:683–687. doi:10.1021/np100030x.

 
Ju Y-M, Rogers JD. 1996. A revision of the genus Hypoxylon. Mycologia Memoir no. 20 St. Paul, MN: APS Press. p. 365 .
 

Kitson RRA, Millemaggi A, Taylor RJK. 2009. The renaissance of α-methylene-γ-butyrolactones: new synthetic approaches. Angew Chem Int Ed. 48:9426–9451. doi:10.1002/anie.200903108.

 

Krohn K, Ludewig K, Aust H-J, Draeger S, Schulz B. 1994. Biologically active metabolites from fungi. 3. sporothriolide, discosiolide, and 4-epi-ethisolide new furofurandiones from Sporothrix sp., Discosia sp., and Pezicula livida. J Antibiot. 47:113–118. doi:10.7164/antibiotics.47.113.

 

Kuhnert E, Fournier J, Peršoh D, Luangsa-ard JJ, Stadler M. 2014. New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers. 64:181–203. doi:10.1007/s13225-013-0264-3.

 

Kuhnert E, Heitkämper S, Fournier J, Surup F, Stadler M. 2014. Hypoxyvermelhotins A-C, new pigments from Hypoxylon lechatii sp. nov. Fungal Biol. 118:242–252. doi:10.1016/j.funbio.2013.12.003.

 

Læssøe T, Srikitikulchai P, Luangsa-ard JJD, Stadler M. 2013. Theissenia reconsidered, including molecular phylogeny of the type species T. pyrenocrata and a new genus Durotheca (Xylariaceae, Ascomycota). IMA Fungus. 4:57–69. doi:10.5598/imafungus.2013.04.01.07.

 

McCorkindale NJ, Wright JLC, Brian PW, Clarke SM, Hutchinson SA. 1968. Canadensolide – an antifungal metabolite of Penicillium canadense. Tetrahedron Lett. 9:727–730. doi:10.1016/S0040-4039(00)75621-8.

 

Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 75:311–335. doi:10.1021/np200906s

 

Pažoutová S, Follert S, Bitzer J, Keck M, Surup F, Šrůtka P, Holuša J, Stadler M. 2013. A new endophytic insect-associated Daldinia species, recognised from a comparison of secondary metabolite profiles and molecular phylogeny. Fungal Divers. 60:107–123. doi:10.1007/s13225-013-0238-5.

 

Peršoh D, Melcher M, Graf K, Fournier J, Stadler M, Rambold G. 2009. Molecular and morphological evidence for the delimitation of Xylaria hypoxylon. Mycologia. 101:256–268. doi:10.3852/08-108.

 

Quang DN, Hashimoto T, Fournier J, Stadler M, Radulović N, Asakawa Y. 2005. Sassafrins A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron. 61:1743–1748. doi:10.1016/j.tet.2004.12.031.

 

Quang DN, Stadler M, Fournier J, Asakawa Y. 2006. Carneic acids A and B, Chemotaxonomically significant antimicrobial agents from the Xylariaceous Ascomycete Hypoxyloncarneum. J Nat Prod. 69:1198–1202. doi:10.1021/np0602057.

 

Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang H, Davies JE, Bills GF. 2011. Confronting the challenges of natural product-based antifungal discovery. Chem Biol. 18:148–164. doi:10.1016/j.chembiol.2011.01.009

 

Somerville AN. 1998. Scifinder scholar. J Chem Educ. 75(959):975–976.

 

Stadler M. 2011. Importance of secondary metabolites in the Xylariaceae as parameters for assessment of their taxonomy, phylogeny, and functional biodiversity. Curr Res Environ Appl Mycol J Fungal Biol. 1:75–133. doi:10.5943/cream/1/2/1.

 

Stadler M, Fournier J. 2006. Pigment chemistry, taxonomy and phylogeny of the hypoxyloideae (Xylariaceae). Rev Iberoam Micol. 23:160–170. doi:10.1016/S1130-1406(06)70037-7.

 

Stadler M, Fournier J, Gardt S, Peršoh D. 2010. The phylogenetic position of Rhopalostroma as inferred from a polythetic approach. Persoonia. 25:11–21. doi:10.3767/003158510X524231

 

Stadler M, Fournier J, Lassoe T, Chlebicki A, Lechat C, Flessa F, Rambold G, Peršoh D. 2010. Chemotaxonomic and phylogenetic studies of Thamnomyces (Xylariaceae). Mycoscience. 51:189–207. doi:10.1007/S10267-009-0028-9.

 

Stadler M, Fournier J, Læssøe T, Decock C, Peršoh D, Rambold G. 2010. Ruwenzoria, a new genus of the Xylariaceae from central africa. Mycol Progr. 9:169–179. doi:10.1007/s11557-009-0623-3.

 

Stadler M, Hellwig V. 2005. Chemotaxonomy of the Xylariaceae and remarkable bioactive compounds from Xylariales and their associated asexual stages. Recent Res Devel Phytochem. 9:41–93.

 

Stadler M, Laessoe T, Fournier J, Decock C, Schmieschek B, Tichy HV, Peršoh D. 2014. A polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol. 77:1–143. doi:10.3114/sim0016.

 

Stadler M, Quang DN, Tomita A, Hashimoto T, Asakawa Y. 2006. Changes in secondary metabolism during stromatal ontogeny of Hypoxylon fragiforme. Mycol Res. 110:811–820. doi:10.1016/j.mycres.2006.03.013.

 

Stadler M, Wollweber H, Mühllbauer A, Henkel T, Asakawa Y, Hashimoto T, Rogers JD, Ju YM, Wetzstein HG, Tichy HV. 2001. Secondary metabolite profiles, genetic fingerprints and taxonomy of Daldinia and allies. Mycotaxon. 77:379–429.

 

Surup F, Mohr KI, Jansen R, Stadler M. 2013. Cohaerins G-K, azaphilone pigments from Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C-K. Phytochemistry. 95:252–258. doi:10.1016/j.phytochem.2013.07.027.

 

Whalley AJS, Edwards RL. 1995. Secondary metabolites and systematic arrangement within the Xylariaceae. Can J Bot. 73(Suppl S1):S802–S810. doi:10.1139/b95-325.

 

Zheng H, Audus KL. 1994. Cytotoxic effects of chlorhexidine and nystatin on cultured hamster buccal epithelial cells. Int J Pharm. 101:121–126. doi:10.1016/0378-5173(94)90083-3.

Mycology
Pages 110-119
Cite this article:
Surup F, Kuhnert E, Lehmann E, et al. Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum. Mycology, 2014, 5(3): 110-119. https://doi.org/10.1080/21501203.2014.929600

167

Views

40

Crossref

N/A

Web of Science

42

Scopus

Altmetrics

Received: 22 May 2014
Accepted: 24 May 2014
Published: 22 July 2014
© 2014 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Return