Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cordyceps, as a general term, describes a group of ascomycetous fungi growing on arthropods and other related fungi. Some cordyceps have been used in traditional Chinese medicine for centuries and cordyceps-derived products are currently a big industry in China. A number of medicinal and health products have been developed and extensively commercialized from natural Chinese cordyceps, its anamorphic fungus (Hirsutella sinensis), and other fungi known as Chinese cordyceps. The lack of a defined classification system for medicinal cordyceps fungi is a source of confusion in the industry and the public, and even among pharmaceutical scientists. This review summarizes the cordyceps fungi currently used in the industry in China with a special reference to clarify Chinese cordyceps and associated fungi. Cordyceps militaris, Cordyceps guangdongensis and Isaria cicadae are well recognized and commercialized cordyceps fungi in China. Except the natural Chinese cordyceps and its anamorphic fungus, Paecilomyces hepiali, Mortierella hepiali, Cephalosporium sinensis and Clonostachys rosea isolated from natural Chinese cordyceps are classified as Chinese cordyceps–associated fungi. P. hepiali is a cordyceps fungus based on current phylogenetic analysis of Hypocreales, while M. hepiali is a fungus in the Zygomycetes and should only be treated as associated fungus of Chinese cordyceps. C. sinensis and C. rosea belong to the Hypocreales and their relationship to cordyceps fungi should be further studied. The exploitation of the resources of cordyceps fungi and their quality control in the industry should be major topics for future studies. Cooperation between the industry and the research community will enhance the whole cordyceps industry.
Ban S, Sakane T, Nakagiri A. 2015. Three new species of Ophiocordyceps and overview of anamorph types in the genus and the family Ophiocordyceptaceae. Mycol Progress. 14: 1017.
Bhandari AK, Negi JS, Bisht VK, Rana CS, Bharti MK, Singh N. 2010. Chemical constituent, inorganic elements and properties of Cordyceps sinensis–a review. Nat Sci. 8: 253–256.
Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P. 2010. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 9: 883–897.
Chen YQ, Wang N, Qu LH, Li TH, Zhang WM. 2001. Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. Biochem Syst Ecol. 29:597–607.
Dai JJ, Fan T, Wu CH, Xiao LZ, Tian SF. 2007. Summarization of the study on the artificial cultivation of Cordyceps militaris Link. J Anhui Agric Sci. 35:5469–5471.
Dai RQ, Lan JL, Chen WH, Li XM, Chen QT, Shen CY. 1989. Research on Paecilomyces hepiali Chen et Dai, sp.nov. Acta Agri Univ Pekinensis. 15:221–224.
Das SK, Masuda M, Sakurai A, Sakakibara M. 2010. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 81:961–968.
Dong JZ, Lei C, Ai XR, Wang Y. 2012. Selenium enrichment on Cordyceps militaris Link and analysis on its main active components. Appl Biochem Biotechnol. 166:1215–1224.
Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Chiba K, Hoshino Y, Okumoto T. 1994. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot (Tokyo). 47:208–215.
Gao SY, Wang FZ. 2008. Research of commercialized cultivation technology on Cordyceps militaris. North Hortic. 9:212–215.
Gu Y-X, Wang Z-S, Li S-X, Yuan Q-S. 2007. Effect of multiple factors on accumulation of nucleosides and bases in Cordyceps militaris. Food Chem. 102:1304–1309.
Guo HJ, Hu HJ, Liu SC, Liu XZ, Zhou YG, Che YS. 2007. Bioactive p-terphenyl derivatives from a Cordyceps colonizing isolate of Gliocladium sp. J Nat Prod. 70:1519–1521.
Guo HJ, Sun BD, Gao H, Chen XL, Liu SC, Yao XS, Liu XZ, Che YS. 2009. Diketopiperazines from the Cordyceps-colonizing fungus Epicoccum nigrum. J Nat Prod. 72:2115–2119.
Guo HJ, Sun BD, Gao H, Niu SB, Liu XZ, Yao XS, Che YS. 2009. Trichocladinols A-C, cytotoxic metabolites from a Cordyceps-colonizing ascomycete Trichocladium opacum. Eur J Org Chem. 2009:5525–5530.
Holliday J, Cleaver M. 2008. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Intl J Med Mush. 10:219–234.
Jeong M, Park Y, Jeong D, Lee C, Kim J, Oh S, Jeong S, Yang K, Jo W. 2014. In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. Int J Mol Med. 34:1349–1357.
Jiang Y, Yao YJ. 2002. Names related to Cordyceps sinensis anamorph. Mycotaxon. 84:245–254.
Jiang Y, Yao YJ. 2003. Anamorphic fungi related to Cordyceps sinensis. Mycosystema. 22:161–176. in Chinese.
Jin AH, Tao QP, Zhang YG. 1987. Teratogenic effects of Cephalosporium sinensis mycelia in rats. Zhong Yao Cai. 18:45. in Chinese.
Jin CY, Kim GY, Choi YH. 2008. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 cells. J Microbiol Biotechnol. 18:1997–2003.
Lee HH, Park H, Sung GH, Lee K, Lee T, Lee I, Park MS, Jung YW, Shin YS, Kang H, et al. 2014. Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model. J Microbiol. 52:696–701.
Li ZZ, Huang B, Fan MZ. 2000. Molecular evidence for anamorph determination of Cordyceps sinensis (Berk.) Sacc. Mycosystema. 19:60–64.
Lin QY, Li TH, Song B. 2008. Cordyceps guangdongensis sp. nov. from China. Mycotaxon. 103:371–376.
Liu GY, Hu SY. 1991. Comparison of sedative and analgesic effects between Cordyceps cicadae and its cultured product. Chin J Med Appl Pharm. 8:4–8.
Liu XJ, Guo YL, Yu YX, Zeng W. 1989. Isolation and identification of the anamorphic state of Cordyceps sinensis (Berk.) Sacc. Acta Mycol Sin. 8:35–40.
Liu ZY, Liang ZQ, Liu AY, Yao YJ, Hyde KD, Yu ZN. 2002. Molecular evidence for teleomorph-anamorph connections in Cordyceps based on ITS-5.8S rDNA sequences. Mycol Res. 106:1100–1108.
Liu ZY, Yao YJ, Liang ZQ, Liu AY, Pegler DN, Chase MW. 2001. Molecular evidence for the anamorph–teleomorph connection in Cordyceps sinensis. Mycol Res. 105:827–832.
Ma C, Li Y, Niu SB, Zhang H, Liu XZ, Che YS. 2011. N-Hydroxypyridones, phenylhydrazones, and a quinazolinonefrom Isaria farinosa. J Nat Prod. 74:32–37.
Ng TB, Wang HX. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol. 57:1509–1519.
Nikoh N, Fukatsu T. 2000. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Mol Biol Evol. 17:629–638.
Paterson RRM. 2008. Cordyceps – a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 69:1469–1495.
Shrestha B, Tanaka E, Han JG, Oh JS, Han SK, Lee KH, Sung GH. 2014. A brief chronicle of the genus Cordyceps Fr., the oldest valid genus in Cordycipitaceae (Hypocreales, Ascomycota). Mycobiology. 42:93–99.
Shrestha B, Zhang WM, Zhang YJ, Liu XZ. 2010. What is the Chinese caterpillar fungus Ophiocordyceps sinensis (Ophiocordycipitaceae)? Mycology. 1:228–236.
Smiderle F, Baggio C, Borato D, Santana-Filho A, Sassaki G, Iacomini M, Van Griensven LL. 2014. Anti-Inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1R3)-β-D-Glucan. PLoS One. 9:e110266.
Spatafora JW, Sung G-H, Sung J-M, Hywel-Jones NL, White Jr JF. 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol. 16:1701–1711.
St. Leger RJ, Wang CS, Fang WG. 2011. New perspectives on insect pathogens. Fungal Biol Rev. 25:84–88.
Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol. 57:5–59.
Thakur A, Hui R, Hongyan Z, Tian Y, Tianjun C, Mingwei C. 2011. Pro-apoptotic effects of Paecilomyces hepiali, a Cordyceps sinensis extract on human lung adenocarcinoma A549 cells in vitro. J Cancer Res Ther. 7:421–426.
Wang H, Zhang J, Sit WH, Lee CY, Wan JM. 2014. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study. Chin Med. 9:15.
Wang Y, Zhao XJ, Tang FD. 2001. Primary exploring on pharmic effect of Cordyceps cicadae. Zhejiang J Chin Tradit Med. 36:219–220.
Wei XL, Yin XC, Guo YL, Shen NY, Wei JC. 2006. Analyses of molecular systematics on Cordyceps sinensis and its related taxa. Mycosystema. 25:192–202.
Weng SC, Chou CJ, Lin LC, Tsai WJ, Kuo YC. 2002. Immunomodulatory functions of extracts from the Chinese medicinal fungus Cordyceps cicadae. J Ethnopharmacol. 83:79–85.
Winkler D. 2008. Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot. 62:291–305.
Winkler D. 2010. Caterpillar fungus production and sustainability on the Tibetan Plateau and in the Himalayas. Chin J Grassland. 32:96–108.
Yan W, Li T, Lao J, Song B, Shen Y. 2013. Anti-fatigue property of Cordyceps guangdongensis and the underlying mechanisms. Pharm Biol. 51:614–620.
Yan W, Li T, Zhong Z. 2014. Anti-inflammatory effect of a novel food Cordyceps guangdongensis on experimental rats with chronic bronchitis induced by tobacco smoking. Food Funct. 5:2552–2557.
Yan WJ, Li TH, Jiang ZD. 2011. Anti-fatigue and life-prolonging effects of Cordyceps guangdongensis. Food Res Develop. 32:164–166.
Yan WJ, Li TH, Jiang ZD. 2012. Therapeutic effects of Cordyceps guangdongensis on chronic renal failure rats induced by adenine. Mycosystema. 31:432–442.
Yan WJ, Li TH, Lin QY, Song B, Jiang ZD. 2010. Safety assessment of Cordyceps guangdongensis. Food Chem Toxicol. 48:3080–3084.
Yu JW, Xu HJ, Mo ZH, Zhu HL, Mao XB. 2009. Determination of myriocin in natural and cultured Cordyceps cicadae using 9-fluorenylmethyl chloroformate derivatization and high-performance liquid chromatography with UV-detection. Anal Sci. 25:855–859.
Yue GGL, Lau CBS, Fung KP, Leung PC, Ko WH. 2008. Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J Ethnopharmacol. 117:92–101.
Yue K, Ye M, Zhou Z, Sun W, Lin X. 2013. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 65:474–493.
Zhang S, Zhang YJ, Bhushan S, Xu JP, Wang CS, Liu XZ. 2013. Ophiocordyceps sinensis and Cordyceps militaris: research advances, issues and perspectives. Mycosystema. 32:577–597.
Zhang YG, Liu SC, Che YS, Liu XZ. 2007. Epicoccins A-D, epipolythiodioxopiperazines from a Cordyceps colonizing isolate of Epicoccum nigrum. J Nat Prod. 70:1522–1525.
Zhang YG, Liu SC, Liu HW, Liu XZ, Che YS. 2009. Cycloaspeptides F and G, cyclic pentapeptides from a Cordyceps-colonizing isolate of Isaria farinosa. J Nat Prod. 72:1364–1367.
Zhang YJ, Li EW, Wang CS, Li YL, Liu XZ. 2012. Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycology. 3:2–10.
Zhang YJ, Zhang S, Li YL, Ma SL, Wang CS, Xiang MC, Liu X, An ZQ, Xu J, Liu XZ. 2014. Phylogeography and evolution of a fungal–insect association on the Tibetan Plateau. Mol Ecol. 23:5337–5355.
Zhang YJ, Zhang S, Wang M, Bai FY, Liu XZ. 2010. High diversity of the fungal community structure in naturally-occurring Ophiocordyceps sinensis. PLoS One. 5:e15570.
Zhao J, Wang N, Chen YQ, Li TH, Qu LG. 1999. Molecular identification for the asexual stage of Cordyceps sinensis. Acta Sci Nat Univ Sunyatseni. 38:121–123.
Zheng P, Xia YL, Zhang SW, Wang CS. 2013. Genetics of Cordyceps and related fungi. Appl Microbiol Biotechnol. 97:2797–2804.
Zhou X, Gong Z, Su Y, Lin J, Tang K. 2009. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 61:279–291.
Zhou XW, Li LJ, Tian EW. 2014. Advances in research of the artificial cultivation of Ophiocordyceps sinensis in China. Crit Rew Biotechnol. 34:233–243.
Zhu JS, Halpern GM, Jones K. 1998. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis Part I. J Altern Complement Med. 4:289–303.
Zhu R, Chen YP, Deng YY, Zheng R, Zhong YF, Wang L, Du LP. 2011. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model. J Zhejiang Univ Sci (B). 12:1024–1033.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.