AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Screening of new secretory cellulases from different supernatants of white rot fungi from Misiones, Argentina

Romina Olga Coniglio( )María Isabel FonsecaLaura Lidia VillalbaPedro Darío Zapata
Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina
Show Author Information

Abstract

Cellulases hydrolyse the cellulose chain into single sugars efficiently. These sugars can be fermented in the bioethanol process, a source of renewable energy. Misiones rainforest is one of the most biodiverse systems on the planet subtropical ecoregions, which is the most probable site to find new fungal strains with potential for degrading cellulose through cellulases. The aim of this work was to find an efficient cellulolytic microorganism through the exploration of native white rot fungi from Misiones. From the qualitative screening 11 fungal strains were selected. The quantitative analysis revealed that the isolated LBM 033 was the best cellulases producer, reaching 57,226 and 387 U/l of cellobiohydrolase, β-glucosidase and endoglucanase activity, respectively. The zymograms showed that the molecular mass of most of the endoglucanases ranged from 69 to 88 kDa and the molecular mass of most of the cellobiohydrolases was 45 kDa. The search of new cellulases of secretory organisms should lead to an efficient degradation of cellulosic materials, and thus facilitating potential applications in the production of bioenergy from lignocellulosic biomass.

References

 

Baldrian P, Valàšková V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. 32:501–521.

 

Bhattacharya AS, Bhattacharya A, Pletschke BI. 2015. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett. 37:1117–1129.

 

Brown AD, Grau A, Lomáscolo TGasparri NI. 2002. Una estrategia de conservación para las selvas subtropicales de montaña (yungas) de argentina. Ecotrópicos. 15:147–159.

 

Chang CJ, Wu CP, Lu SC, Chao AL, Ho THD, Yu SM, Chao YC. 2012. A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca). Insect Biochem Mol Biol. 42:629–636.

 

Chukeatirote E, Maharachchikumbura SSN, Wongkham S, Sysouphanthong P, Phookamsak R, Hyde KD. 2012. Cloning and sequence analysis of the cellobiohydrolase Ⅰ genes from some Basidiomycetes. Mycobiology. 40:107–110.

 

Dojnov B, Grujić M, Vujčić Z. 2015. Reliable simultaneous zymographic method of characterization of cellulolytic enzymes from fungal cellulase complex. Electrophoresis. 36:1724–1727.

 

Falkoski DL, Guimaraes VM, De Almeida MN, Alfenas AC, Colodette JL, De Rezende ST. 2012. Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification. Appl. Biochem Biotechnol. 166:1586–1603.

 

Fonseca MI, Fariña JI, Castrillo ML, Rodríguez MD, Nuñez CE, Villalba LL, Zapata PD. 2014. Biopulping of wood chips with Phlebia brevispora BAFC 633 reduces lignin content and improves pulp quality. Int Biodeter Biodegr. 90:29–35.

 

Ghose T. 1987. Measurement of cellulase activities. Pure Appl Chem. 59:257–268.

 

Gutiérrez-Soto G, Medina-González GE, García-Zambrano EA, Treviño-Ramírez JE, Hernández-Luna CE. 2015. Selection and characterization of a native Pycnoporus sanguineus strain as a lignocellulolytic extract producer from submerged cultures of various agroindustrial wastes. BioResources. 10:3564–3576.

 

Herr D, Baumer F, Dellweg H. 1978. Purification and properties of an extraeellular endo-l,4-β-glucanase from Lenzites trabea. Appl Microbiología Biotechnol. 5:29–36.

 

Irbe I, Elisashvili V, Asatiani MD, Janberga A, Andersone I, Andersons B, Grinins J. 2014. Lignocellulolytic activity of Coniophora puteana and Trametes versicolor in fermentation of wheat bran and decay of hydrothermally modified hardwoods. Int Biodeterior Biodegrad. 86:71–78.

 

Jia J, Dyer PS, Buswell JA, Peberdy JF. 1999. Cloning of the cbhI and cbhII genes involved in cellulose utilisation by the straw mushroom Volvariella volvácea. Mol Gen Genet. 261:985–993.

 

Kachlishvili E, Khardziani T, Metreveli E, Kobakhidze A, Elisashvili V. 2012. Screening of novel basidiomycetes for the production of Lignocellulolytic enzymes during fermentation of food wastes. Waste Conver J Bioprod Biotechnol. 1:9–15.

 

Kubicek CP, Kubicek EM. 2016. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci. 41:633–645.

 

Kuhad RC, Gupta R, Singh A. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 1:10.

 

Lee KM, Moon HJ, Kalyani D, Kim H, Kim IW, Jeya M, Lee JK. 2011. Characterization of cellobiohydrolase from a newly isolated strain of Agaricus arvencis. J Microbiol Biotechnol. 21:711–718.

 

Liew CY, Husaini A, Hussain H, Muid S, Liew KC, Roslan HA. 2011. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World J Microbiol Biotechnol. 27:1457–1468.

 

Manavalan T, Manavalan A, Heese K. 2015. Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol. 70:485–498.

 

Sajith S, Priji P, Sreedevi S, Benjamin S. 2016. An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci. 6:1.

 

Sukumaran RK, Singhania RR, Pandey AJ. 2005. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio ethanol production. Sci Ind Res. 64:832–844.

 

Teather RM, Wood PJ. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the Bovine Rument. Appl Environ Microbiol. 43:777–780.

 

Toda H, Nagahata N, Amano Y, Nozaki K, Kanda T, Okazaki M, Shimosaka M. 2008. Gene cloning of cellobiohydrolase Ⅱ from the white rot fungus I rpex lacteus MC-2 and its expression in Pichia pastoris. Biosci. Biotechnol. Biochem. 72:3142–3147.

 

Uusitalo JM, Nevalainen KM, Harkki AM, Knowles JK, Penttila ME. 1991. Enzyme production by recombinant Trichoderma reesei strains. J Biotechnol. 17:35–49.

 

Wu B, Zhao Y, Gao PJ. 2006. Estimation of cellobiohydrolase Ⅰ activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim Biophys. 38:372–378.

Mycology
Pages 1-10
Cite this article:
Coniglio RO, Fonseca MI, Villalba LL, et al. Screening of new secretory cellulases from different supernatants of white rot fungi from Misiones, Argentina. Mycology, 2017, 8(1): 1-10. https://doi.org/10.1080/21501203.2016.1267047

110

Views

16

Crossref

0

Web of Science

17

Scopus

Altmetrics

Received: 11 July 2016
Accepted: 28 November 2016
Published: 16 December 2016
© 2016 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return