Sort:
Open Access Article Issue
Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology
Mycology 2018, 9 (4): 239-249
Published: 08 June 2018
Abstract Collect

The aim of the present study was to assess the ability of different white-rot fungi to tolerate polychlorinated biphenyls (PCBs) using predictive mycology, by relating fungal growth inhibition to ligninolityc enzyme secretion. Fungal strains were grown in the presence of PCBs in solid media and their radial growth values were modelled through the Dantigny-logistic like function in order to estimate the time required by the fungal colonies to attain half their maximum diameter. The principal component analysis (PCA) revealed an inverse correlation between strain tolerance to PCBs and the laccase secretion over time, being laccase production closely associated with fungal growth capacity. Finally, a PCA was run to regroup and split between resistant and sensitive fungi. Simultaneously, a function associated with a model predicting the tolerance to PCBs was developed. Some of the assayed isolates showed a promising capacity to be applied in PCB bioremediation.

Open Access Original Article Issue
Screening of new secretory cellulases from different supernatants of white rot fungi from Misiones, Argentina
Mycology 2017, 8 (1): 1-10
Published: 16 December 2016
Abstract Collect

Cellulases hydrolyse the cellulose chain into single sugars efficiently. These sugars can be fermented in the bioethanol process, a source of renewable energy. Misiones rainforest is one of the most biodiverse systems on the planet subtropical ecoregions, which is the most probable site to find new fungal strains with potential for degrading cellulose through cellulases. The aim of this work was to find an efficient cellulolytic microorganism through the exploration of native white rot fungi from Misiones. From the qualitative screening 11 fungal strains were selected. The quantitative analysis revealed that the isolated LBM 033 was the best cellulases producer, reaching 57,226 and 387 U/l of cellobiohydrolase, β-glucosidase and endoglucanase activity, respectively. The zymograms showed that the molecular mass of most of the endoglucanases ranged from 69 to 88 kDa and the molecular mass of most of the cellobiohydrolases was 45 kDa. The search of new cellulases of secretory organisms should lead to an efficient degradation of cellulosic materials, and thus facilitating potential applications in the production of bioenergy from lignocellulosic biomass.

Total 2