AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Invited Review | Open Access

Living strategy of cold-adapted fungi with the reference to several representative species

Manman WangaJianqing Tianb,cMeichun Xiangb,cXingzhong Liub,c( )
College of Life Science, Hebei University, Baoding, China
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Show Author Information

Abstract

Our planet is dominant with cold environments that harbour enormously diverse cold-adapted fungi comprising representatives of all phyla. Investigation based on culture-dependent and independent methods has demonstrated that cold-adapted fungi are cosmopolitan and occur in diverse habitants and substrates. They live as saprobes, symbionts, plant and animal parasites and pathogens to perform crucial functions in different ecosystems. Pseudogymnoascus destructans caused bat white-nose syndrome and Ophiocordyceps sinensis as Chinese medicine are the representative species that have significantly ecological and economic significance. Adaptation to cold niches has made this group of fungi a fascinating resource for the discovery of novel enzymes and secondary metabolites for biotechnological and pharmaceutical uses. This review provides the current understanding of living strategy and ecological functions of cold-adapted fungi, with particular emphasis on how those fungi overcome the extreme low temperature and perform their ecological function.

References

 

Abe F, Minegishi H, Miura T, Nagahama T, Usami R, Horikoshi K. 2006. Characterization of cold-and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6. Biosci. Biotechnol.Biochem. 70:296–299.

 

Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K. 2001. Isolation of a highlycopper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett. 23:2027–2034.

 

Anupama PD, Praveen KD, Singh RK, Kumar S, Srivastava AK, Arora DK. 2011. A psychrophilic and halotolerant strain of thelebolus microspores from Pangong Lake, Himalaya. Mycosphere. 2:601–609.

 

Arenz BE, Blanchette RA. 2009. Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol. 55:46–56.

 

Arenz BE, Blanchette RA. 2011. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo dry valleys. Soil Biol Biochem. 43:308–315.

 

Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA. 2006. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem. 38:3057–3064.

 

Bjorbaekmo MFM, Carlsen T, Brysting A, Vrålstad T, Høiland K, Ugland KI, Geml J, Schumacher T, Kauserud H. 2010. High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biology. 10:244.

 

Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM, Farrell RL. 2010. An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb Ecol. 60:29–38.

 

Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL. 2004. Wood destroying soft-rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol. 70:1328–1335.

 

Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL. 2009. Bat white-nose syndrome: an emerging fungal pathogen? Science. 323:227.

 
Bommer E, Rousseau M 1905. Champignons in resultats du voyage du SY Belgica, expedition Antarctique Beige 1897-1899. Rapports Scientifiques Botanique pp. 1–5
 

Bridge PD, Spooner BM. 2012. Non-lichenised Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecololgy. 5:381–394.

 

Brown RNR. 1906. Antarctic botany: its present state and future problems. Scottish Geogr Mag. 22:473–484.

 

Buffoni Hall RS, Bornman JF, Björn LA. 2002. UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. J. Photochem Photobiol B Biol. 66:13–20.

 
Burns RG. 1978. Enzymes in soil: some theoretical and practical considerations. In: Burns RG, editor. Soil Enzymes. London: Academic Press; p. 295–339.
 
Chen JY, Sangwoo L, Cao YQ, Peng YQ, Winkler D, Yang DR. 2010. Ethnomycological use of medicinal Chinese caterpillar fungus, Ophiocordyceps sinensis (Berk.) G. H. Sung et al. (Ascomycetes) in northern Yunnan province, SW China. Inter J Med Mush. 12:427–434.
 

Connell LB, Redman R, Craig SD, Scorzetti G, Iszard M, Rodriguez R. 2008. Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol. 56:448–459.

 

Cowan DA, Tow LA. 2004. Endangered Antarctic environments. Annu Rev Microbiol. 58:649–690.

 

Damare S, Nagarajan M, Raghukumar C. 2008. Spore germination of fungi belonging to Aspergillus species under deep- sea conditions. Deep-Sea Res I. 55:670–678.

 

Damare S, Raghukumar C, Raghukumar S. 2006. Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Research I. 53:14–27.

 

de Los Ríos A, Sancho LG, Grube M, Wierzchos J, Ascaso C. 2005b. Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol. 165:181–190.

 

de Los Ríos A, Wierzchos J, Sancho LG, Green A, Ascaso C. 2005a. Ecology of endolithic lichens colonizing granite in continental Antarctica. The Lichenol. 37:383–395.

 
De Los Ríos A, Wierzchos J, Sancho LG, Grube M, Ascaso C. 2002. Microbial endolithic biofilms: a means of surviving the harsh conditions of the Antarctic. European Space Agency Publications Division, 518:219–222.
 

Deshmukh SK. 2002. Incidence of dermatophytes and other keratinophilic fungi in the glacier bank soils of the Kashmir valley, India. Mycologist. 16(4):165–167.

 

Deslippe JR, Hartmann M, Mohn WW, Simard SW. 2011. Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Glob Chang Biol. 17:1625–1636.

 
Domsch K-H, Gams W, Anderson T-H. 1980. Compendium of soil fungi. London: Academic Press.
 

Duncan SM, Farrell RL, Jordan N, Jurgens JA, Blanchette RA. 2010. Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctica. Polar Sci. 4:275–283.

 

Farrell RL, Arenz BE, Duncan SM, Held BW, Jurgens JA, Blanchette RA. 2011. Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol. 34:1669–1677.

 

Finotti E, Moretto D, Marsella R, Mercantini R. 1993. Temperature effects and fatty acid patterns in Geomyces species isolated from Antarctic soil. Polar Biol. 13(2):127–130.

 

Finotti E, Paolino C, Lancia B, Mercantini R. 1996. Metabolic differences between two antarctic strains of Geomyces pannorum. Curr Microbiol. 32(1):7–10.

 
Flanagan PW, Scarborough AM. 1974. Physiological groups of decomposer fungi on tundra plant remains. In: Holding AJ, Heal OW, MacLean SF Jr, Flanagan PW, eds. Soil organisms and decomposition in tundra. Stockholm, Sweden: Tundra Biome Steering Committee; p. 159–181.
 
Frisvad JC. 2008. Fungi in Cold Ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C, eds.. Psychrophiles: from Biodiversity to Biotechnology. Springer-Verlag, Berlin Heidelberg; p. 137–156.
 

Gadanho M, Sampaio JP. 2005. Occurrence and diversity of yeasts in the mid-atlantic ridge hydrothermal fields near the Azores Archipelago. Microbial Ecology. 50:408–417.

 

Gardes M, Dahlberg A. 1996. Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytologist. 133:147–157.

 

Gargas A, Trest MT, Christensen M, et al. 2009. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon. 108:147–154.

 

Geml J, Kauff F, Brochmann C, et al. 2012. Frequent circumarctic and rare transequatorial dispersals in the lichenised agaric genus Lichenomphalia (Hygrophoraceae, Basidiomycota). Fungal Biology. 116:388–400.

 

Gleason FH, Marano AV. 2011. The effects of antifungal substances on some zoosporic fungi (Kingdom Fungi). Hydrobiologia. 659:81–92.

 

Golubic S, Friedmann EI, Schneider J. 1981. The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol. 51:475–478.

 
Green TGA, Schroeter B, Sancho L. 1999. Plant life in Antarctica. In: Pugnaire FI, Valladares F, editors. Handbook of functional plant ecology. New York: Marcel Dekker; p. 495–543.
 

Harper CJ, Bomfleur B, Decombeix AL, Taylor EL, Taylor TN, Krings M. 2012. Tylosis formation and fungal interactions in an early Jurassic conifer from northern Victoria Land, Antarctica. Rev Palaeobot Palynol. 175:25–31.

 
Hassan H 2015. Isolation and characterization of psychrophilic fungi from Batura Passu and Siachen Glaciers, Pakistan. Dissertation. Department of Microbiology, Quaid-i-Azam University, Islamabad.
 

Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F. 2016. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol. 15(2):147–172.

 

Hayes, Mark A. 2012. The Geomyces Fungi: ecology and distribution. BioScience. 62(9):819–823.

 

He et al.. 2017. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol. 17:22.

 
Held BW, Jurgens JA, Arenz BE, Duncan SM, Farrell RL, Blanchette RA. 2005. Environmental factors influencing microbial growth inside the historic huts of Ross Island, Antarctica. Int Biodeterior Biodegrad.55(1):45–53.
 

Hobbie JE, Hobbie EA. 2006. 15N In symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology. 87:816–822.

 

Hoshino T, Terami F, Tkachenko OB, et al. 2010. Mycelial growth of the snow mold fungus Sclerotinia borealis, improved at low water potentials: an adaptation to frozen environment. Mycoscience. 51:98–103.

 

Hoshino T, Tronsmo AM, Matsumoto N, Araki T, Georges F, Goda T, Ohgiya S, Ishizaki K. 1998. Freezing resistance among isolates of a psychrophilic fungus, Typhula ishikariensis, from Norway. Proc. NIPR Symp. Polar Biol. 11:112–118.

 
Hyde KD, Jones EBG, Moss ST. 1986. Mycelial adhesion to surfaces. In: Moss ST, ed. The Biology of Marine Fungi. Cambridge: Cambridge Univ. Press; p. 331–340.
 

Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW. 2005. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. USA. 102:3141–3146.

 

Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S. 2007. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. Isme J. 1:756–762.

 

Lawley B, Ripley S, Bridge P, Convey P. 2004. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol. 70:5963–5972.

 

Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P. 2009. Fungal diversity in deep sea hydrothermal ecosystems. Applied and Environmental Microbiology. 75:6415–6421.

 

Li HY, Shen M, Zhou ZP, et al. 2012. Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China[J]. Fungal Diversity. 54(1):79–86.

 

Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H, Che Y. 2008. Bioactive Asterric Acid Derivatives from the antarctic ascomycete fungus Geomyces sp. J Nat Prod. 71(9):1643–1646.

 

Liu H, Herbert HP, Fang HP. 2002. Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol. 95:249–256.

 

Lo HC, Hsieh C, Lin FY, Hsu TH. 2013. A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in Dong-Chong Xia Cao (Dong Chong Xia Căo) and related bioactive ingredients. Journal of Traditional and Complementary Medicine. 3:16–32.

 

Ludley KE, Robinson CH. 2008. Decomposer, Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol Biochem. 40:11–29.

 
Mao XL, Jiang CP. 1993. Economic macrofungi of tibet. Beijing Science and Technology Press, Beijing.
 

Margesin R, Fell JW. 2008. Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol. 58:2977–2982.

 

Margesin R, Fonteyne PA, Schinner F, Sampaio JP. 2007. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol. 57:2179–2184.

 

Margesin R, Miteva V. 2011. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 162:346–361.

 

Matsumoto N. 2009. Snow molds: a group of fungi that prevail under snow. Minireview. Microbes Environ. 24(1):14–20.

 

Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V. 2009. Histopathologic criteria to confirm white-nose syndrome in bats. J Vet Diagn Invest. 21:411–414.

 

Minnis AM, Lindner DL. 2013. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. Nov., in Bat Hibernacula of Eastern North America. Fungal Biolo. 117(9):638–649.

 

Miura T, Abe F, Inoue A, Usami R, Horikoshi K. 2001. Purification and characterization of novel extracellular endopolygalacturonases from a deep-sea yeast, Cryptococcus sp. N6, isolated from the Japan Trench. Biotechnol Lett. 23:1735–1739.

 

Moghaddam MSH, Soltani J. 2014. Psychrophilic endophytic fungi with biological activity inhabit Cupressaceae plant family[J]. Symbiosis. 63(2):79–86.

 

Morita RY. 1975. Psychrophilic bacteria. Bacteriol Rev. 39(2):144–167.

 

Nagahama T, Hamamoto M, Horikoshi K. 2006. Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int J Syst Evol Microbiol. 56:295–299.

 

Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K. 2010. Fungal diversity in deep-sea sediments e the presence of novel fungal groups. Fungal Ecol. 3:316–325.

 

Nakajima T, Abe J. 1994. Development of resistance to Microdochium nivale in winter wheat during autumn and decline and the resistance under snow. Can J Bot. 72:1211–1215.

 
Nienow JA, Friedmann EI. 1993. Terrestrial lithophytic (rock) communities. In: Friedmann EI, editor. Antarctic microbiology. New York: Wiley-Liss; p. 343–412.
 
Onofri S, Zucconi L, Selbmann L, De Hoog GS, Barreca D, Ruisi S, Grube M. Forthcoming 2007. Fungi from Antarctic desert rocks as analogues for Martian life. In: Cockell CS editor. Microorganisms and martian environment. European Space Agency Special Publication, Chapter 6.
 
Øvstedal DO, Lewis Smith RI. 2001. Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Studies in Polar Research. Cambridge, UK: Cambridge University Press; p. 411.
 
Ozerskaya S, Kochkina G, Ivanushkina, Gilichinsky DA. 2008. Fungi in Permafros ([Online-Ausg.]. ed.). Berlin: Springer; p. 85–95.
 

Parish CA., de la Cruz M, Smith SK., Zink D, Baxter J, Tucker-Samaras S, Collado J, Platas G, Bills Gerald, Díez MT, et al. 2009. Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from geomyces pannorum. Journal of Natural Products. 72(1):59–62.

 

Parmelee JA. 1989. The rusts (Uredinales) of arctic Canada. Can J Bot. 67:3315–3365.

 

Paterson RA. 1973. The occurrence and distribution of some aquatic phycomycetes on Ross Island and the dry valleys of Victoria Land, Antarctica. Mycologia. 65:373–387.

 
Raghukumar C, Damare SR, Muraleedharan UD 2009. A process for the production of low temperature-active alkaline protease from a deep-sea fungus.EP1692296.
 

Raghukumar C, Raghukumar S, Sheelu G, Gupta S, Nagendernath B, Rao B. 2004. Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Research Part I. 51:1759–1768.

 

Richard WN, Palm ME, Johnstone K, et al. 1997. Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from Fellfield soils in the Maritime Antarctic. Mycologia. 89(5):705–711.

 

Robin S, Hall T, Turchetti B, et al. 2010. Cold-adapted yeasts from Antarctica and the Italian Alps – description of three novel species: mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. Nov. Extremophiles. 14:47–59.

 

Roth FJ, Orpurt PA, Ahearn DJ. 1964. Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot. 42:375–383.

 

Russell NJ. 2006. Antarctic microorganisms: coming in from the cold. Art Newspaper. 8(1):247–248.

 

Sancho LG, Schulz F, Schroeter B, Kappen L. 1999. Bryophyte and lichen flora of South Bay (Livingston Island: south Shetland Islands, Antarctica). Nova Hedwigia. 68:301–337.

 

Schipper MA. 1967. Mucor strictus hagem, a psychrophilic fungus, and Mucor falcatus sp.n. Antonie Van Leeuwenhoek. 33(2):189–195.

 

Scholler M, Schnittler M, Piepenbring M. 2003. Species of Anthracoidea (Ustilaginales, Basidiomycota) on Cyperaceae in Arctic Europe. Nova Hedwig. 76:415–428.

 

Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S. 2005. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud. Mycol.. 51:1–32.

 

Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M. 2002. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol. 153:585–592.

 

Selbmann L, Zucconi L, Onofri S, Cecchini C, Isola D, Turchetti B, Buzzini P. 2014. Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Biology. 118:61–71.

 

Shivaji S, Bhadra B, Rao RS, Pradhan S. 2008. Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles. 12:375–381.

 

Singh P, Raghukumar C, Verma P, Shouche Y. 2010. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Diversity. 40:89–102.

 

Singh SM, Puja G, Bhat DJ. 2006. Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci. 90:1388–1392.

 
Smith D. 1993. Tolerance to freezing and thawing. In: Jenninuns DH, editor. Stress Tolerance of Fungi. e w York: Marcel Dekker Inc; p. 147–171.
 

Smith JA, Blanchette RA, Newcombe G. 2004. Molecular and morphological characterization of the willow rust fungus, Melampsora epitea, from arctic and temperate hosts in North America. Mycologia. 96:1330–1338.

 

Stone R. 2008. Last stand for the body snatcher of the Himalayas? Science. 322:1182–1182.

 

Stubblefield SP, Taylor TN. 1983. Studies of Paleozoic fungi. I. The structure and organization of Traquairia (Ascomycota). Amer J Bot. 70:387–399.

 

Su Y, Jiang XZ, Wu WP, Wang MM, Hamid MI, Xiang MC, Liu XZ. 2016. Provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3. 6(11):3603–3613.

 

Taylor TN, Osborne JM. 1996. The importance of fungi in shaping the paleoecosystem. Rev Paleobot Palynol. 90:249–262.

 

Timling I, Taylor DL. 2012. Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecol. 5:419–429.

 

Timling I, Walker DA, Nusbaum C, Lennon NJ, Taylor DL. 2014. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Molecular Ecology. 23:3258–3272.

 

Traquair JA, Smith DJ. 1982. Sclerotial strains of Coprinus psychromorbidus, a snow mold basidiomycete. Canadian Journal of Plant Pathology. 4(1):27–36.

 

Walker DA, Kuss P, Epstein HE, et al. 2011. Vegetation of zonal patterned-ground ecosystems along the North America Arctic bioclimate gradient. Applied Vegetation Science. 14:440–463.

 

Wang M, Jiang X, Wu W, et al. 2015. Psychrophilic fungi from the world’s roof. Persoonia. 34:100–112.

 

Xia, et al. 2017. The caterpillar fungus, Ophiocordyceps sinensis, genome provides insights into highland adaptation of fungal pathogenicity. Sci Rep. 7:1806.

 

Xiao HU, Zhang YJ, Xiao GH, et al. 2013. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus[J]. Chinese Science Bulletin. 58(23):2846–2854.

 
Xin MX, Zhou PJ. 2007. J. Zhejiang Univ., Sci. B. 8(4):260–265.
 

Xin MXZhou PJ. 2007. Mrakia psychrophila sp. nov. a new species isolated from antarctic soil. j. zhejiang univ. sci. B. 8(4):260–265.

 

Zhang Y, Li E, Wang C, Li Y, Liu X. 2012. Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecolog y. Mycology. 3:2–10.

 

Zhang Y, Zhang S, Li Y, Ma S, Wang C, Xiang M, Liu X, An Z, Xu J, Liu X. 2014. Phylogeography and evolution of a fungal-insect association on the tibetan plateau. Molecular Ecology. 23(21):5337–5355.

 

Zucconi L, Ripa C, Selbmann L, Onofri S. 2002. Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol. 25:500–505.

Mycology
Pages 178-188
Cite this article:
Wang M, Tian J, Xiang M, et al. Living strategy of cold-adapted fungi with the reference to several representative species. Mycology, 2017, 8(3): 178-188. https://doi.org/10.1080/21501203.2017.1370429

121

Views

44

Crossref

0

Web of Science

44

Scopus

Altmetrics

Received: 11 July 2017
Accepted: 16 August 2017
Published: 30 August 2017
© 2017 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return