AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Invited Article | Open Access

Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi

Weiwei Zhanga,bXiaoling ZhangaKuan LiaChengshu WangcLei CaiaWenying ZhuangaMeichun Xianga( )Xingzhong Liua( )
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
Show Author Information

Abstract

Hypocrealean fungi (Ascomycota) are known for their diversity of lifestyles. Their vital influences on agricultural and natural ecosystems have resulted in a number of sequenced genomes, which provide essential data for genomic analysis. Totally, 45 hypocrealean fungal genomes constructed a phylogeny. The phylogeny showed that plant pathogens in Nectriaceae diverged earliest, followed by animal pathogens in Cordycipitaceae, Ophiocordycipitaceae and Clavicipitaceae with mycoparasites in Hypocreaceae. Insect/nematode pathogens and grass endophytes in Clavicipitaceae diverged at last. Gene families associated with host-derived nutrients are significantly contracted in diverged lineages compared with the ancestral species. Introgression was detected in certain lineages of hypocrealean fungi, and the main functions of the genes located in the introgressed regions are involved in host recognition, transcriptional regulation, stress response and cell growth regulation. These results indicate that contraction of gene families and introgression might be main mechanisms to drive lifestyle differentiation and evolution and host shift of hypocrealean fungi.

References

 

Alexandros S. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313.

 

Arnold ML. 2004. Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell. 16:562–570.

 

Berbee ML. 2001. The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant P. 59:165–187.

 

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37:D233–D238.

 

Chen S, Liu X, Chen F. 2000. Hirsutella minnesotensis sp. nov., a new pathogen of the soybean cyst nematode. Mycologia. 92:819–824.

 

Clay K. 1988. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology. 69:10–16.

 

De Bie T, Cristianini N, Demuth J, Hahn M. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 22:1269–1271.

 

De Wolf E, Madden L, Lipps P. 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology. 93:428–435.

 

Dimitrios F, Manfred B, Robert R, Kerrie B, Robert B, Bernard H, Angel M, Otillar R, Spatafora JW. 2012. The paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes. Science. 1715:336.

 

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 29:1969–1973.

 

Durand EYN, Patterson D, Reich SM. 2011. Testing for ancient admixture between closely related species. Mol Biol Evol. 28:2239–2252.

 

Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G. 2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 7:e1001264.

 

Geiser DM, Timberlake WE, Arnold ML. 1996. Loss of meiosis in Aspergillus. Mol Biol Evol. 13:809–817.

 

Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Heng L, Zhai W, Fritz MH-Y, et al. 2010. A draft sequence of the neandertal genome. Science. 328:710–722.

 

Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9:r7.

 

Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R. 2004. The gene ontology (go) database and informatics resource. Nucleic Acids Res. 32:258–261.

 

Holder MT, Anderson JA, Holloway AK. 2001. Difficulties in detecting hybridization. Systematic Biol. 50:978–982.

 

Hu X, Zhang Y, Xiao G, Zheng P, Xia Y, Zhang X, St Leger RJ, Liu X, Wang C. 2013. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chin Sci Bull. 58:2846–2854.

 

Hudson RR. 1983. Testing the constant-rate neutral allele model with protein sequence data. Evolution. 37:203–217.

 

Jaffee B, Zehr E. 1982. Parasitism of the nematode Criconemella xenoplax by the fungus Hirsutella rhossiliensis. Phytopathology. 72:1378–1381.

 

Kazutaka K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:102–343.

 
Kirk P, Cannon P, Minter D, Stalpers J. 2008. Dictionary of the fungi. Wallingford, UK: CABI.
 

Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J. 2011. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog. 7:e1002137.

 

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg S. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5:R12.

 

Lai Y, Liu K, Zhang X, Zhang X, Li K, Wang N, Shu C, Wu Y, Wang C, Bushley KE, et al. 2014. Comparative genomics and transcriptomics analyses reveal divergent lifestyle features of nematode endoparasitic fungus Hirsutella minnesotensis. Genome Biol Evol. 6:3077–3093.

 

Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin CJ, Wang C, Zamani N, et al. 2015. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature. 518:371–375.

 

Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. 2009. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 25:1966–1967.

 

Liu K, Zhang W, Lai Y, Xiang M, Wang X, Zhang X, Liu X. 2014. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics. 151:452–457.

 

Liu X, Chen SY. 2000. Parasitism of Heterodera glycines, by Hirsutella spp. in Minnesota soybean fields. Biol Control. 19:161–166.

 

Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT. 2009. Fungi evolved right on track. Mycologia. 101:810–822.

 

Marco P, Coggill PC, Eberhardt RY, Jaina M, John T, Chris B. 2012. The pfam protein families database. Nucleic Acids Res. 40:290–301.

 

Martin S, Davey J, Jiggins C. 2014. Evaluating the use of ABBA-BABA statistics to locate introgrerssed loci. Mol Biol Evol. 32:244–257.

 

Möller EM, Bahnweg G, Sandermann H, Geiger HH. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 20:6115–6116.

 

Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL. 2004. Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol. 13:1455–1467.

 

Paterson A, Bowers J, Chapman B. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA. 101:9903–9908.

 

Pease J, Rosenzweig B. 2015. Encoding data using biological principles: the multisample variant format for phylogenomics and population genomics. IEEE ACM Trans Comput Biol. 9623:1.

 

Pease JB, Haak DC, Hahn MW, Moyle LC. 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. Plos Biol. 14:e1002379.

 

Rawlings ND, Morton FR, Barrett AJ. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34:D270–D272.

 

Rogerson CT. 1970. The hypocrealean fungi (ascomycetes, Hypocreales). Mycologia. 62:865–910.

 

Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S. 2011. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nature Commun. 2:202.

 

Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, et al. 2004. The funcat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32:5539–5545.

 

Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, Patterson N, Reich D. 2014. The genomic landscape of Neanderthal ancestry in present-day humans. Nature. 507:354–357.

 

Song Y, Endepols S, Klemann N, Richter D, Matuschka FR, Shih CH, Nachman MW, Kohn MH. 2011. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol. 21:1296–1301.

 

Spatafora JW, Bushley KE. 2015. Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Curr Opin Plant Bio. 26:37–44.

 

Spatafora JW, Sung G, Sung J, Hywel-Jones NL, White JF. 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol. 16:1701–1711.

 

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22:2688–2690.

 

Summerell BA, Leslie JF, Liew ECY, Laurence MH, Bullock S, Petrovic T, Bentley AR, Howard CG, Peterson SA, Walsh JL. 2011. Fusarium species associated with plants in Australia. Fungal Divers. 46:1–27.

 

Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol. 57:5–59.

 

Sung GH, Poinar GO, Spatafora JW. 2008. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal–arthropod symbioses. Mol Phylogenet Evol. 49:495–502.

 

Tempel S. 2012. Using and understanding repeatmasker. Methods Mol Biol. 859:29–51.

 

Toledo AV, Virla E, Humber RA, Paradell SL, Lastra CC. 2006. First record of Clonostachys rosea, (ascomycota: hypocreales) as an entomopathogenic fungus of oncometopia tucumana, and sonesimia grossa, (hemiptera: cicadellidae) in argentina. J Invertebr Pathol. 92:7–10.

 
Wang CSt Leger RJ. 2013. In: editor. The ecological genomics of fungi. John Wiley & Sons, New York; 243–260 p.
 

White JF Jr, Bacon CW, Hywel-Jones NL, Spatafora JW. 2003. Clavicipitalean fungi: evolutionary biology, chemistry, biocontrol and cultural impacts. CRC Press, New York.

 

Whitney KD, Randell RA, Rieseberg LH. 2006. Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Am Nat. 167:794–807.

 

Winnenburg R, Baldwin TK, Urban M, Rawlings C, Köhler J, Hammond-Kosack KE. 2006. Phi-base: a new database for pathogen host interactions. Nucleic Acids Res. 34:459–464.

 

Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang CS. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2:483.

 

Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol. 87:46–49.

 

Zdobnov E, Apweiler R. 2001. InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 17:847–848.

 

Zhang L, Yang J, Niu Q, Zhao X, Ye F, Liang L, Zhang KQ. 2008. Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biot. 78:983–990.

 

Zhang W, Dasmahapatra KK, Mallet J, Moreira GRP, Kronforst MR. 2015. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17:1–15.

 

Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang C. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12:R116.

Mycology
Pages 176-188
Cite this article:
Zhang W, Zhang X, Li K, et al. Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi. Mycology, 2018, 9(3): 176-188. https://doi.org/10.1080/21501203.2018.1478333

197

Views

37

Crossref

0

Web of Science

32

Scopus

Altmetrics

Received: 26 April 2018
Accepted: 15 May 2018
Published: 24 May 2018
© 2018 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return