AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology

Marcela Alejandra Sadañoskia( )Juan Ernesto VelázquezaMaría Isabel FonsecaaPedro Darío ZapataaLaura Noemí LevinbLaura Lidia Villalbaa
Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina
Laboratorio de Micología Experimental, Dpto. de Biodiversidad y Biología Experimental, FCEN, UBA, INMIBO (CONICET), CABA, Argentina
Show Author Information

Abstract

The aim of the present study was to assess the ability of different white-rot fungi to tolerate polychlorinated biphenyls (PCBs) using predictive mycology, by relating fungal growth inhibition to ligninolityc enzyme secretion. Fungal strains were grown in the presence of PCBs in solid media and their radial growth values were modelled through the Dantigny-logistic like function in order to estimate the time required by the fungal colonies to attain half their maximum diameter. The principal component analysis (PCA) revealed an inverse correlation between strain tolerance to PCBs and the laccase secretion over time, being laccase production closely associated with fungal growth capacity. Finally, a PCA was run to regroup and split between resistant and sensitive fungi. Simultaneously, a function associated with a model predicting the tolerance to PCBs was developed. Some of the assayed isolates showed a promising capacity to be applied in PCB bioremediation.

References

 

Č N, Vyas BRM, Erbanova P, Kubatova A, Šašek V. 1997. Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiol. 42(2):136–140.

 

Archibald FS. 1992. Lignin peroxidase activity is not important in biological bleaching and delignification of unbleached kraft pulp by trametes versicolor. Appl Environ Microbiol. 58(9):3101–3109.

 

Baranyi J, Roberts TA. 1995. Mathematics of predictive food microbiology. Int J Food Microbiol. 26(2):199–218.

 

Bayman P, Radkar GV. 1997. Transformation and tolerance of TNT (2, 4, 6-trinitrotoluene) by fungi. Int Biodeterior Biodegrad. 39(1):45–53.

 

Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA. 1998. Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol. 64(6):2020–2025.

 

Bevilacqua A, Cibelli F, Raimondo ML, Carlucci A, Lops F, Sinigaglia M, Corbo MR. 2016. Fungal bioremediation of olive mill wastewater: using a multi‐step approach to model inhibition or stimulation. J Sci Food Agric. 97(2):461–468.

 

Bollag JM, Shuttleworth KL, Anderson DH. 1988. Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol. 54(12):3086–3091.

 

Borja J, Taleon DM, Auresenia J, Gallardo S. 2005. Polychlorinated biphenyls and their biodegradation. Process Biochem. 40(6):1999–2013.

 

Carabajal M, Perullini M, Jobbágy M, Ullrich R, Hofrichter M, Levin L. 2016. Removal of phenol by immobilization of Trametes versicolor in silica–alginate–fungus biocomposites and loofa sponge. CLEAN. 44(2):180–188.

 

Chroma L, Macek T, Demnerova K, Macková M. 2002. Decolorization of RBBR by plant cells and correlation with the transformation of PCBs. Chemosphere. 49(7):739–748.

 

Cloete TE, Celliers L. 1999. Removal of Aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentrations of Mn (Ⅳ) oxide. Int Biodeterior Biodegrad. 44(4):243–253.

 

Čvančarová M, Křesinová Z, Filipová A, Covino S, Cajthaml T. 2012. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere. 88(11):1317–1323.

 

Dantigny P, Bensoussan M. 2008. The logarithmic transformation should be avoided for stabilising the variance of mould growth rate. Int J Food Microbiol. 121(2):225–228.

 

Dantigny P, Guilmart A, Bensoussan M. 2005. Basis of predictive mycology. Int J Food Microbiol. 100(1):187–196.

 

Dantigny P, Nanguy SPM, Judet-Correia D, Bensoussan M. 2011. A new model for germination of fungi. Int J Food Microbiol. 146(2):176–181.

 
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW 2016. InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar
 

Dietrich D, Hickey WJ, Lamar R. 1995. Degradation of 4, 4ʹ-dichlorobiphenyl, 3, 3ʹ, 4, 4ʹ-tetrachlorobiphenyl, and 2, 2ʹ, 4, 4ʹ, 5, 5ʹ-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 61(11):3904–3909.

 

Fonseca MI, Shimizu E, Zapata PD, Villalba LL. 2010. Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzyme Microb Technol. 46(6):534–539.

 

Gayosso-Canales M, Rodríguez-Vázquez R, Esparza-García FJ, Bermúdez-Cruz RM. 2012. PCBs stimulate laccase production and activity in Pleurotus ostreatus thus promoting their removal. Folia Microbiol. 57(2):149–158.

 

González EA, Martínez CN, Castrillo ML, Fonseca MI, Zapata PD, Villalba LL. 2013. Identificación por análisis filogenético de hongos de pudrición blanca. J Basic Appl Genet. 4:145.

 
Jarosz-Wilkołazka A, Kochmańska-Rdest J, Malarc z¯Yk E, Wardas W, Leonowicz A. 2002. Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzyme Microb Technol. 30(4):566–572.
 

Kamei I, Kogura R, Kondo R. 2006a. Metabolism of 4, 4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol. 72(3):566–575.

 

Kamei I, Sonoki S, Haraguchi K, Kondo R. 2006b. Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol. 73(4):932–940.

 

Krčmář P, Kubátová A, Votruba J, Erbanová P, Č N, Šašek V. 1999. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J Microbiol Biotechnol. 15(2):269–276.

 

Lee H, Jang Y, Choi YS, Kim MJ, Lee J, Lee H, Hong JH, Lee YM, Kim GH, Kim JJ. 2014. Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods. 97:56–62.

 

Levin L, Papinutti L, Forchiassin F. 2004. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol. 94(2):169–176.

 

Martínez CN, Gonzalez EA, Castrillo ML, Fonseca MI, Zapata PD, Villalba LL. 2013. Identificación y análisis filogenético de una cepa fúngica nativa de la provincia de Misiones. J Basic Appl Genet. 24:146.

 

Matsubara M, Lynch JM, De Leij FAAM. 2006. A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme Microb Technol. 39(7):1365–1372.

 

Moeder M, Cajthaml T, Koeller G, Erbanová P, Šašek V. 2005. Structure selectivity in degradation and translocation of polychlorinated biphenyls (Delor 103) with a Pleurotus ostreatus (oyster mushroom) culture. Chemosphere. 61(9):1370–1378.

 

Murado MA, Tejedor MC, Baluja G. 1976. Interactions between polychlorinated biphenyls (PCBs) and soil microfungi. Effects of Aroclor-1254 and other PCBs on Aspergillus flavus cultures. Bull Environ Contam Toxicol. 15:768–774.

 

Novotný Č, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Šašek V. 2004. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem. 36(10):1545–1551.

 

Paszczynski A, Crawford RL. 1995. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol Prog. 11(4):368–379.

 

Pezet R, Pont V, Hoang-Van K. 1991. Evidence for oxidative detoxication of pterostilbene and resveratrol by a laccase-like stilbene oxidase produced by Botrytis cinerea. Physiol Mol Plant Pathol. 39(6):441–450.

 

Plačková M, Svobodová K, Cajthaml T. 2012. Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor. Int Biodeterior Biodegrad. 71:22–28.

 

Pointing S. 2001. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol. 57(1–2):20–33.

 

Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA. 2017. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ Sci Pollut Res. 1–21.

 

Stella T, Covino S, Čvančarová M, Filipová A, Petruccioli M, D’Annibale A, Cajthaml T. 2017. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater. 324:701–710.

 

Suzuki R, Shimodaira H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 22(12):1540–1542.

 

Yin Y, Guo J, Zheng L, Tian L, Wang X. 2011. Capability of polychlorinated biophenyl (PCBs) degrading fungi segregated from sediments. World J Microbiol Biotechnol. 27(11):2567–2574.

Mycology
Pages 239-249
Cite this article:
Sadañoski MA, Velázquez JE, Fonseca MI, et al. Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology. Mycology, 2018, 9(4): 239-249. https://doi.org/10.1080/21501203.2018.1481152

200

Views

15

Crossref

0

Web of Science

13

Scopus

Altmetrics

Received: 04 January 2018
Accepted: 23 May 2018
Published: 08 June 2018
© 2018 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return