AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Emerging miniaturized energy storage devices for microsystem applications: from design to integration

Huaizhi LiuGuanhua Zhang( )Xin ZhengFengjun ChenHuigao Duan ( )
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People’s Republic of China
Show Author Information

Abstract

The rapid progress of micro/nanoelectronic systems and miniaturized portable devices has tremendously increased the urgent demands for miniaturized and integrated power supplies. Miniaturized energy storage devices (MESDs), with their excellent properties and additional intelligent functions, are considered to be the preferable energy supplies for uninterrupted powering of microsystems. In this review, we aim to provide a comprehensive overview of the background, fundamentals, device configurations, manufacturing processes, and typical applications of MESDs, including their recent advances. Particular attention is paid to advanced device configurations, such as two-dimensional (2D) stacked, 2D planar interdigital, 2D arbitrary-shaped, three-dimensional planar, and wire-shaped structures, and their corresponding manufacturing strategies, such as printing, scribing, and masking techniques. Additionally, recent developments in MESDs, including microbatteries and microsupercapacitors, as well as microhybrid metal ion capacitors, are systematically summarized. A series of on-chip microsystems, created by integrating functional MESDs, are also highlighted. Finally, the remaining challenges and future research scope on MESDs are discussed.

References

[1]

Oudenhoven J F M, Baggetto L and Notten P H L 2011 All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts Adv. Energy Mater. 1 10–33

[2]

Koomey J G, Scott Matthews H and Williams E 2013 Smart everything: will intelligent systems reduce resource use? Annu. Rev. Environ. Resour. 38 311–43

[3]

Kyeremateng N A, Brousse T and Pech D 2017 Microsupercapacitors as miniaturized energy-storage components for on-chip electronics Nat. Nanotechnol. 12 7–15

[4]

Wang Z L 2012 Self-powered nanosensors and nanosystems Adv. Mater. 24 280–5

[5]

Wang Z L and Wu W Z 2012 Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems Angew. Chem., Int. Ed. 51 11700–21

[6]

Li Z, Zheng Q, Wang Z L and Li Z 2020 Nanogenerator-based self-powered sensors for wearable and implantable electronics Research 2020 8710686

[7]

Ding Y, Guo X L, Ramirez-Meyers K, Zhou Y G, Zhang L Y, Zhao F and Yu G H 2019 Simultaneous energy harvesting and storage via solar-driven regenerative electrochemical cycles Energy Environ. Sci. 12 3370–9

[8]

Zheng S H, Shi X Y, Das P, Wu Z S and Bao X H 2019 The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries Adv. Mater. 31 1900583

[9]

Pan X L, Hong X F, Xu L, Li Y X, Yan M Y and Mai L Q 2019 On-chip micro/nano devices for energy conversion and storage Nano Today 28 100764

[10]

Patnaik S G, Jadon A, Tran C C H, Estève A, Guay D and Pech D 2020 High areal capacity porous Sn-Au alloys with long cycle life for Li-ion microbatteries Sci. Rep. 10 10405

[11]

Dubal D P, Ayyad O, Ruiz V and Gómez-Romero P 2015 Hybrid energy storage: the merging of battery and supercapacitor chemistries Chem. Soc. Rev. 44 1777–90

[12]

Zhang P P, Wang F X, Yu M H, Zhuang X D and Feng X L 2018 Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems Chem. Soc. Rev. 47 7426–51

[13]

Dubal D P, Aradilla D, Bidan G, Gentile P, Schubert T J S, Wimberg J, Sadki S and Gomez-Romero P 2015 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid Sci. Rep. 5 9771

[14]

Liu L, Zhao H P and Lei Y 2019 Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review InfoMat 1 74–84

[15]

Zhang H X, Cao Y D, Chee M O L, Dong P, Ye M X and Shen J F 2019 Recent advances in micro-supercapacitors Nanoscale 11 5807–21

[16]

Asfaw H D, Kotronia A, Tai C W, Nyholm L and Edström K 2019 Tailoring the microstructure and electrochemical performance of 3D microbattery electrodes based on carbon foams Energy Technol. 7 1900797

[17]

Zhang Y, Bai W Y, Cheng X L, Ren J, Weng W, Chen P N, Fang X, Zhang Z T and Peng H S 2014 Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs Angew. Chem., Int. Ed. 53 14564–8

[18]

Jia R, Shen G Z, Qu F Y and Chen D 2020 Flexible on-chip micro-supercapacitors: efficient power units for wearable electronics Energy Storage Mater. 27 169–86

[19]

Huang P et al 2016 On-chip and freestanding elastic carbon films for micro-supercapacitors Science 351 691–5

[20]

Kim J, Kumar R, Bandodkar A J and Wang J 2017 Advanced materials for printed wearable electrochemical devices: a review Adv. Electron. Mater. 3 1600260

[21]

Liu W, Song M S, Kong B and Cui Y 2017 Flexible and stretchable energy storage: recent advances and future perspectives Adv. Mater. 29 1603436

[22]

Sumboja A, Liu J W, Zheng W G, Zong Y, Zhang H and Liu Z L 2018 Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design Chem. Soc. Rev. 47 5919–45

[23]

Sun G Q, Jin X T, Yang H S, Gao J and Qu L T 2018 An aqueous Zn–MnO2 rechargeable microbattery J. Mater. Chem. A 6 10926–31

[24]

Lu Y, Jiang K, Chen D and Shen G Z 2019 Wearable sweat monitoring system with integrated micro-supercapacitors Nano Energy 58 624–32

[25]

Da Y M, Liu J X, Zhou L, Zhu X H, Chen X D and Engineering F L 2019 2D architectures toward high-performance micro-supercapacitors Adv. Mater. 31 1802793

[26]

Wang S, Wu Z S, Zheng S H, Zhou F, Sun C L, Cheng H M and Bao X H 2017 Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities ACS Nano 11 4283–91

[27]

Choi K H, Yoo J T, Lee C K and Lee S Y 2016 All-inkjet-printed, solid-state flexible supercapacitors on paper Energy Environ. Sci. 9 2812–21

[28]

Wang Y S et al 2018 Stepwise-nanocavity-assisted transmissive color filter array microprints Research 2018 8109054

[29]

Ellis B L, Knauth P and Djenizian T 2014 Three-dimensional self-supported metal oxides for advanced energy storage Adv. Mater. 26 3368–97

[30]

Beidaghi M and Gogotsi Y 2014 Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors Energy Environ. Sci. 7 867–84

[31]

Ferrari S, Loveridge M, Beattie S D, Jahn M, Dashwood R J and Bhagat R 2015 Latest advances in the manufacturing of 3D rechargeable lithium microbatteries J. Power Sources 286 25–46

[32]

Liu L X, Weng Q H, Lu X Y, Sun X L, Zhang L and Schmidt O G 2017 Advances on microsized on-chip lithium-ion batteries Small 13 1701847

[33]

Liu Z Y, Wu Z S, Yang S, Dong R H, Feng X L and Müllen K 2016 Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene Adv. Mater. 28 2217–22

[34]

Ren J, Li L, Chen C, Chen X L, Cai Z B, Qiu L B, Wang Y G, Zhu X R and Peng H S 2013 Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery Adv. Mater. 25 1155–9

[35]

Shi X Y, Wu Z S, Qin J Q, Zheng S H, Wang S, Zhou F, Sun C L and Bao X H 2017 Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output Adv. Mater. 29 1703034

[36]

Zhang Q et al 2020 Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries Nano Energy 67 104212

[37]

Wang C L, Yu Y C, Niu J J, Liu Y X, Bridges D, Liu X Q, Pooran J, Zhang Y F and Hu A M 2019 Recent progress of metal-air batteries-a mini review Appl. Sci. 9 2787

[38]

Bitenc J, Lindahl N, Vizintin A, Abdelhamid M E, Dominko R and Johansson P 2020 Concept and electrochemical mechanism of an Al metal anode–organic cathode battery Energy Storage Mater. 24 379–83

[39]

Kim D J, Yoo D J, Otley M T, Prokofjevs A, Pezzato C, Owczarek M, Lee S J, Choi J W and Stoddart J F 2019 Rechargeable aluminium organic batteries Nat. Energy 4 51–59

[40]

Ni J F and Li L 2018 Self-supported 3D array electrodes for sodium microbatteries Adv. Funct. Mater. 28 1704880

[41]

Li H P and Liang J J 2020 Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives Adv. Mater. 32 1805864

[42]

Qi D P et al 2017 Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing Adv. Mater. 29 1702800

[43]

Zuo W H, Li R Z, Zhou C, Li Y Y, Xia J L and Liu J P 2017 Battery-supercapacitor hybrid devices: recent progress and future prospects Adv. Sci. 4 1600539

[44]

Qin J Q, Das P, Zheng S H and Wu Z S 2019 A perspective on two-dimensional materials for planar micro-supercapacitors APL Mater. 7 090902

[45]

Zhang Y Z, Wang Y, Cheng T, Yao L Q, Li X C, Lai W Y and Huang W 2019 Printed supercapacitors: materials, printing and applications Chem. Soc. Rev. 48 3229–64

[46]

Yue C, Li J and Lin L W 2017 Fabrication of Si-based three-dimensional microbatteries: a review Front. Mech. Eng. 12 459–76

[47]

Zhang G F, Han Y Y, Shao C X, Chen N, Sun G Q, Jin X T, Gao J, Ji B X, Yang H S and Qu L T 2018 Processing and manufacturing of graphene-based microsupercapacitors Mater. Chem. Front. 2 1750–64

[48]

Zhang L S, Liao M, Bao L K, Sun X M and Peng H S 2017 The functionalization of miniature energy-storage devices Small Methods 1 1700211

[49]

Koo M et al 2012 Bendable inorganic thin-film battery for fully flexible electronic systems Nano Lett. 12 4810–6

[50]

Zhang C F, Kremer M P, Seral-Ascaso A, Park S H, McEvoy N, Anasori B, Gogotsi Y and Nicolosi V 2018 Stamping of flexible, coplanar micro-supercapacitors using MXene Inks Adv. Funct. Mater. 28 1705506

[51]

Zheng S H, Wu Z S, Zhou F, Wang X, Ma J M, Liu C, He Y B and Bao X H 2018 All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance Nano Energy 51 613–20

[52]

Sollami Delekta S, Laurila M M, Mäntysalo M and Li J T 2020 Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors Nano-Micro Lett. 12 40

[53]

Wang K, Zhang X H, Han J W, Zhang X, Sun X Z, Li C, Liu W H, Li Q W and Ma Y W 2018 High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode ACS Appl. Mater. Interfaces 10 24573–82

[54]

Zhang Q C et al 2019 Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery Nano Lett. 19 4035–42

[55]

Zhang Q C et al 2017 Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density Nano Lett. 17 2719–26

[56]

Zhang Q C et al 2017 Constructing ultrahigh-capacity zinc–nickel–cobalt Oxide@Ni(OH)2 core–shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors Nano Lett. 17 7552–60

[57]

Zhu C, Liu T Y, Qian F, Han T Y J, Duoss E B, Kuntz J D, Spadaccini C M, Worsley M A and Li Y 2016 Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores Nano Lett. 16 3448–56

[58]

Wang Y, Zhang Y Z, Dubbink D and ten Elshof J E 2018 Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor Nano Energy 49 481–8

[59]

Abdelkader A M, Karim N, Vallés C, Afroj S, Novoselov K S and Yeates S G 2017 Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications 2D Mater. 4 035016

[60]

Zhang Y, Lu B W, Wang T, Feng X and Xu H X 2019 A photochemical approach toward high-fidelity programmable transfer printing Adv. Mater. Technol. 4 1900163

[61]

Zhou F et al 2018 Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors J. Am. Chem. Soc. 140 8198–205

[62]

Chmiola J, Largeot C, Taberna P L, Simon P and Gogotsi Y 2010 Monolithic carbide-derived carbon films for micro-supercapacitors Science 328 480–3

[63]

Pu J, Shen Z H, Zhong C L, Zhou Q W, Liu J Y, Zhu J and Zhang H G 2020 Electrodeposition technologies for Li-based batteries: new frontiers of energy storage Adv. Mater. 32 1903808

[64]

Ye J L et al 2018 Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output Adv. Mater. 30 1801384

[65]

Guo B S, Sun J Y, Lu Y F and Jiang L 2019 Ultrafast dynamics observation during femtosecond laser-material interaction Int. J. Extreme Manuf. 1 032004

[66]

Dinh T M, Armstrong K, Guay D and Pech D 2014 High-resolution on-chip supercapacitors with ultra-high scan rate ability J. Mater. Chem. A 2 7170–4

[67]

Cirigliano N, Sun G Y, Membreno D, Malati P, Kim C J and Dunn B 2014 3D architectured anodes for lithium-ion microbatteries with large areal capacity Energy Technol. 2 362–9

[68]

Lai W, Erdonmez C K, Marinis T F, Bjune C K, Dudney N J, Xu F, Wartena R and Chiang Y M 2010 Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design Adv. Mater. 22 E139–44

[69]

Baggetto L, Niessen R A H and Roozeboom F 2008 Notten P H L. High energy density all-solid-state batteries: a challenging concept towards 3D integration Adv. Funct. Mater. 18 1057–66

[70]

Ning H L, Pikul J H, Zhang R Y, Li X J, Xu S, Wang J J, Rogers J A, King W P and Braun P V 2015 Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries Proc. Natl Acad. Sci. USA 112 6573–8

[71]

Deng J W, Lu X Y, Liu L X, Zhang L and Schmidt O G 2016 Introducing rolled-up nanotechnology for advanced energy storage devices Adv. Energy Mater. 6 1600797

[72]

Sun X L et al 2016 High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes J. Mater. Chem. A 4 10166–73

[73]

Li X L, Gu M, Hu S Y, Kennard R, Yan P F, Chen X L, Wang C M, Sailor M J, Zhang J G and Liu J 2014 Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes Nat. Commun. 5 4105

[74]

Yang Y, Zhu H, Xiao J F, Geng H B, Zhang Y F, Zhao J B, Li G, Wang X L, Li C C and Liu Q 2020 Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides Adv. Mater. 32 1905295

[75]

Lu L G, Han X B, Li J Q, Hua J F and Ouyang M G 2013 A review on the key issues for lithium-ion battery management in electric vehicles J. Power Sources 226 272–88

[76]

Li W H, Bradley L C and Watkins J J 2019 Copolymer solid-state electrolytes for 3D microbatteries via initiated chemical vapor deposition ACS Appl. Mater. Interfaces 11 5668–74

[77]

Crespilho F N, Sedenho G C, De Porcellinis D, Kerr E, Granados-Focil S, Gordon R G and Aziz M J 2019 Non-corrosive, low-toxicity gel-based microbattery from organic and organometallic molecules J. Mater. Chem. A 7 24784–7

[78]

Kanehori K, Matsumoto K, Miyauchi K and Kudo T 1983 Thin film solid electrolyte and its application to secondary lithium cell Solid State Ion. 9-10 1445–8

[79]

Moitzheim S, Put B and Vereecken P M 2019 Advances in 3D thin-film Li-Ion batteries Adv. Mater. Interfaces 6 1900805

[80]

Wang Y, Roller J and Maric R 2017 Direct dry synthesis of thin nanostructured LiNi0.8Co0.2O2 film for lithium ion micro-battery cathodes Electrochim. Acta 241 510–6

[81]

Sun C W, Liu J, Gong Y D, Wilkinson D P and Zhang J J 2017 Recent advances in all-solid-state rechargeable lithium batteries Nano Energy 33 363–86

[82]

Sun K, Wei T S, Ahn B Y, Seo J Y, Dillon S J and Lewis J A 2013 3D printing of interdigitated Li-ion microbattery architectures Adv. Mater. 25 4539–43

[83]

Wei T S, Ahn B Y, Grotto J and Lewis J A 2018 3D printing of customized Li-ion batteries with thick electrodes Adv. Mater. 30 1703027

[84]

Pikul J H, Zhang H G, Cho J, Braun P V and King W P 2013 High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes Nat. Commun. 4 1732

[85]

Li X R, Li H P, Fan X Q, Shi X L and Liang J J 2020 3D-printed stretchable micro-supercapacitor with remarkable areal performance Adv. Energy Mater. 10 1903794

[86]

Lin J, Zhang C G, Yan Z, Zhu Y, Peng Z W, Hauge R H, Natelson D and Tour J M 2013 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance Nano Lett. 13 72–78

[87]

Yang G R, Ilango P R, Wang S L, Nasir M S, Li L L, Ji D X, Hu Y X, Ramakrishna S, Yan W and Peng S J 2019 Sodium-Ion batteries: carbon-based alloy-type composite anode materials toward sodium-ion batteries (Small 22/2019) Small 15 1970115

[88]

Chen J W, Chua D H C and Lee P S 2020 The advances of metal sulfides and in situ characterization methods beyond Li Ion batteries: sodium, potassium, and aluminum ion batteries Small Methods 4 1900648

[89]

Uchaker E and Cao G Z 2015 The role of intentionally introduced defects on electrode materials for alkali-ion batteries Chem-Asian J. 10 1608–17

[90]

Ye M H, Hwang J Y and Sun Y K 2019 A 4 V class potassium metal battery with extremely low overpotential ACS Nano 13 9306–14

[91]

Li C C, Wang B, Chen D, Gan L Y, Feng Y Z, Zhang Y F, Yang Y, Geng H B, Rui X H and Yu Y 2020 Topotactic transformation synthesis of 2D ultrathin GeS2 nanosheets toward high-rate and high-energy-density sodium-ion half/full batteries ACS Nano 14 531–40

[92]

Zhong S Y, Liu H Z, Wei D H, Hu J, Zhang H, Hou H S, Peng M X, Zhang G H and Duan H G 2020 Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries Chem. Eng. J. 395 125054

[93]

Nightingale E R Jr 1959 Phenomenological theory of ion solvation. effective radii of hydrated ions J. Phys. Chem. 63 1381–7

[94]

Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K and Gopinadhan K 2017 Size effect in ion transport through angstrom-scale slits Science 358 511–3

[95]

Li Y Q, Shi H, Wang S B, Zhou Y T, Wen Z, Lang X Y and Jiang Q 2019 Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries Nat. Commun. 10 4292

[96]

Zheng S H, Huang H J, Dong Y F, Wang S, Zhou F, Qin J Q, Sun C L, Yu Y, Wu Z S and Bao X H 2020 Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability Energy Environ. Sci. 13 821–9

[97]

Lu Y, Li L, Zhang Q, Niu Z Q and Chen J 2018 Electrolyte and interface engineering for solid-state sodium batteries Joule 2 1747–70

[98]

Ponrouch A, Monti D, Boschin A, Steen B, Johansson P and Palacín M R 2015 Non-aqueous electrolytes for sodium-ion batteries J. Mater. Chem. A 3 22–42

[99]

Zhong S Y, Zhang H, Fu J C, Shi H M, Wang L, Zeng W, Liu Q H, Zhang G H and Duan H G 2018 In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries ChemElectroChem 5 1708–16

[100]

Zhang G H, Hou S C, Zhang H, Zeng W, Yan F L, Li C C and Duan H G 2015 High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode Adv. Mater. 27 2400–5

[101]

Wang X, Zeng W, Hong L, Xu W W, Yang H K, Wang F, Duan H G, Tang M and Jiang H Q 2018 Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates Nat. Energy 3 227–35

[102]

Song M, Tan H, Chao D L and Fan H J 2018 Recent advances in Zn-Ion batteries Adv. Funct. Mater. 28 1802564

[103]

Lin M C et al 2015 An ultrafast rechargeable aluminium-ion battery Nature 520 324–8

[104]

Xu C J, Li B H, Du H D and Kang F Y 2012 Energetic zinc ion chemistry: the rechargeable zinc ion battery Angew. Chem., Int. Ed. 51 933–5

[105]

Zeng Y X, Zhang X Y, Meng Y, Yu M H, Yi J N, Wu Y Q, Lu X H and Tong Y X 2017 Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery Adv. Mater. 29 1700274

[106]

Kundu D, Adams B D, Duffort V, Vajargah S H and Nazar L F 2016 A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode Nat. Energy 1 16119

[107]

Liu S C, Zhu H, Zhang B H, Li G, Zhu H K, Ren Y, Geng H B, Yang Y, Liu Q and Li C C 2020 Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance Adv. Mater. 32 2001113

[108]

Geng H B, Cheng M, Wang B, Yang Y, Zhang Y F and Li C C 2020 Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries Adv. Funct. Mater. 30 1907684

[109]

Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W and Rolison D R 2017 Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion Science 356 415–8

[110]

He B et al 2018 High-performance flexible all-solid-state aqueous rechargeable Zn–MnO2 microbatteries integrated with wearable pressure sensors J. Mater. Chem. A 6 14594–601

[111]

Chen S F, Zhang Y F, Geng H B, Yang Y, Rui X H and Li C C 2019 Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries J. Power Sources 441 227192

[112]

Liu M M, Pu X, Cong Z F, Liu Z X, Liu T, Chen Y H, Fu J Q, Hu W G and Wang Z L 2019 Resist-dyed textile alkaline Zn microbatteries with significantly suppressed zn dendrite growth ACS Appl. Mater. Interfaces 11 5095–106

[113]

Hao Z M, Xu L, Liu Q, Yang W, Liao X B, Meng J S, Hong X F, He L and Mai L Q 2019 On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics Adv. Funct. Mater. 29 1808470

[114]

Wei Q L, An Q Y, Chen D D, Mai L Q, Chen S Y, Zhao Y L, Hercule K M, Xu L, Minhas-Khan A and Zhang Q J 2014 One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries Nano Lett. 14 1042–8

[115]

Chen Y M, Li X Y, Park K, Song J, Hong J H, Zhou L M, Mai Y W, Huang H T and Goodenough J B 2013 Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-Ion batteries J. Am. Chem. Soc. 135 16280–3

[116]

Zhou G M, Li F and Cheng H M 2014 Progress in flexible lithium batteries and future prospects Energy Environ. Sci. 7 1307–38

[117]

Wang X F, Lu X H, Liu B, Chen D, Tong Y X and Shen G Z 2014 Flexible energy-storage devices: design consideration and recent progress Adv. Mater. 26 4763–82

[118]

Zhang C J, Zhu J X, Lin H J and Huang W 2018 Fiber batteries: flexible fiber and fabric batteries (Adv. Mater. Technol. 10/2018) Adv. Mater. Technol. 3 1870038

[119]

Chen D, Jiang K, Huang T and Shen G Z 2020 Recent advances in fiber supercapacitors: materials, device configurations, and applications Adv. Mater. 32 1901806

[120]

Huang Y, Zhu M S, Huang Y, Li H F, Pei Z X, Xue Q, Liao Z, Wang Z F and Zhi C Y 2016 A modularization approach for linear-shaped functional supercapacitors J. Mater. Chem. A 4 4580–6

[121]

Li H F et al 2018 Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte ACS Nano 12 3140–8

[122]

Huang Y, Zhong M, Shi F K, Liu X Y, Tang Z J, Wang Y K, Huang Y, Hou H Q, Xie X M and Zhi C Y 2017 An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte Angew. Chem., Int. Ed. 56 9141–5

[123]

Xu Y F, Zhang Y, Guo Z Y, Ren J, Wang Y G and Peng H S 2015 Flexible, stretchable, and rechargeable fiber-shaped zinc–air battery based on cross-stacked carbon nanotube sheets Angew. Chem., Int. Ed. 54 15390–4

[124]

Su Z J, Yang C, Xie B H, Lin Z Y, Zhang Z X, Liu J P, Li B H, Kang F Y and Wong C P 2014 Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor Energy Environ. Sci. 7 2652–9

[125]

Simon P and Gogotsi Y 2008 Materials for electrochemical capacitors Nat. Mater. 7 845–54

[126]

Wang L, Zhang G H, Zhang X J, Shi H M, Zeng W, Zhang H, Liu Q, Li C C, Liu Q H and Duan H G 2017 Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors J. Mater. Chem. A 5 14801–10

[127]

Bose S, Kuila T, Mishra A K, Rajasekar R, Kim N H and Lee J H 2012 Carbon-based nanostructured materials and their composites as supercapacitor electrodes J. Mater. Chem. 22 767–84

[128]

Augustyn V, Simon P and Dunn B 2014 Pseudocapacitive oxide materials for high-rate electrochemical energy storage Energy Environ. Sci. 7 1597–614

[129]

Wang L, Liu H Z, Zhao J G, Zhang X J, Zhang C Z, Zhang G H, Liu Q H and Duan H G 2020 Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors Chem. Eng. J. 382 122979

[130]

Tang Z Y, Zhang G H, Zhang H, Wang L, Shi H M, Wei D H and Duan H G 2018 MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors Energy Storage Mater. 10 75–84

[131]

Zhang X J, Wang L, Wei Z X, Zhang G H, Zeng W, Fu J C, Liu Q H and Duan H G 2018 Ultra-stable asymmetric supercapacitors constructed by in-situ electro-oxidation activated Ni@CNTs composites ChemElectroChem 5 3213–21

[132]

Li R Z, Zhou Y P, Li W B, Zhu J X and Huang W 2020 Structure engineering in biomass-derived carbon materials for electrochemical energy storage Research 2020 8685436

[133]

Li Y et al 2019 Manganese-doped nickel molybdate nanostructures for high-performance asymmetric supercapacitors Chem. Eng. J. 372 452–61

[134]

Boota M, Anasori B, Voigt C, Zhao M Q, Barsoum M W and Gogotsi Y 2016 Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene) Adv. Mater. 28 1517–22

[135]

Peng Y Y, Akuzum B, Kurra N, Zhao M Q, Alhabeb M, Anasori B, Kumbur E C, Alshareef H N, Ger M D and Gogotsi Y 2016 All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage Energy Environ. Sci. 9 2847–54

[136]

Schütter C, Pohlmann S and Balducci A 2019 Industrial requirements of materials for electrical double layer capacitors: impact on current and future applications Adv. Energy Mater. 9 1900334

[137]

Qi D P, Liu Y, Liu Z Y, Zhang L and Chen X D 2017 Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges Adv. Mater. 29 1602802

[138]

Du W C, Geng H B, Yang Y, Zhang Y F, Rui X H and Li C L 2019 Pristine graphene for advanced electrochemical energy applications J. Power Sources 437 226899

[139]

In J B, Hsia B, Yoo J H, Hyun S, Carraro C, Maboudian R and Grigoropoulos C P 2015 Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide Carbon 83 144–51

[140]

Pech D, Brunet M, Taberna P L, Simon P, Fabre N, Mesnilgrente F, Conédéra V and Durou H 2010 Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor J. Power Sources 195 1266–9

[141]

Kim S K, Koo H J, Lee A and Braun P V 2014 Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors Adv. Mater. 26 5108–12

[142]

Li Z, Song B, Wu Z K, Lin Z Y, Yao Y G, Moon K S and Wong C P 2015 3D porous graphene with ultrahigh surface area for microscale capacitive deionization Nano Energy 11 711–8

[143]

Babbitt C W and Moore E A 2018 Sustainable nanomaterials by design Nat. Nanotechnol. 13 621–3

[144]

Zhao J X et al 2019 Fiber-shaped electrochemical capacitors based on plasma-engraved graphene fibers with oxygen vacancies for alternating current line filtering performance ACS Appl. Energy Mater. 2 993–9

[145]

Huang P H, Heon M, Pech D, Brunet M, Taberna P L, Gogotsi Y, Lofland S, Hettinger J D and Simon P 2013 Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips J. Power Sources 225 240–4

[146]

Liu H J, Wang J, Wang C X and Xia Y Y 2011 Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor Adv. Energy Mater. 1 1101–8

[147]

Beidaghi M, Chen W and Wang C L 2011 Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors J. Power Sources 196 2403–9

[148]

Wang S, Hsia B, Carraro C and Maboudian R 2014 High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte J. Mater. Chem. A 2 7997–8002

[149]

Chen C J, Zhang Y, Li Y J, Dai J Q, Song J W, Yao Y G, Gong Y H, Kierzewski I, Xie J and Hu L B 2017 All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance Energy Environ. Sci. 10 538–45

[150]

Pech D, Brunet M, Durou H, Huang P H, Mochalin V, Gogotsi Y, Taberna P L and Simon P 2010 Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon Nat. Nanotechnol. 5 651–4

[151]

El-Kady M F and Kaner R B 2013 Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage Nat. Commun. 4 1475

[152]

Zheng S H, Tang X Y, Wu Z S, Tan Y Z, Wang S, Sun C L, Cheng H M and Bao X H 2017 Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration ACS Nano 11 2171–9

[153]

Du J W, Mu X M, Zhao Y R, Zhang Y X, Zhang S M, Huang B Y, Sheng Y Z, Xie Y Z, Zhang Z X and Xie E Q 2019 Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors Nanoscale 11 14392–9

[154]

Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S and Zboril R 2016 Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications Chem. Rev. 116 5464–519

[155]

Wang S T, Yu Y C, Luo S, Cheng X P, Feng G Y, Zhang Y F, Wu Z L, Compagnini G, Pooran J and Hu A M 2019 All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing Appl. Phys. Lett. 115 083904

[156]

Wang S T, Yu Y C, Li R Z, Feng G Y, Wu Z L, Compagnini G, Gulino A, Feng Z L and Hu A M 2017 High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets Electrochim. Acta 241 153–61

[157]

Nathan-Walleser T, Lazar I M, Fabritius M, Tölle F J, Xia Q, Bruchmann B, Venkataraman S S, Schwab M G and Mülhaupt R 2014 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors Adv. Funct. Mater. 24 4706–16

[158]

Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 The chemistry of graphene oxide Chem. Soc. Rev. 39 228–40

[159]

Rangom Y, Tang X W and Nazar L F 2015 Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance ACS Nano 9 7248–55

[160]

Wang X F, Liu B, Liu R, Wang Q F, Hou X J, Chen D, Wang R M and Shen G Z 2014 Fiber-Based Flexible All-Solid-State Asymmetric Supercapacitors for Integrated Photodetecting System Angew. Chem., Int. Ed. 53 1849–53

[161]

Wu Z S, Parvez K, Li S, Yang S, Liu Z Y, Liu S H, Feng X L and Müllen K 2015 Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors Adv. Mater. 27 4054–61

[162]

Hu Z M et al 2017 Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method Nat. Commun. 8 15630

[163]

Jiang Q, Kurra N, Xia C and Alshareef H N 2017 Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy Adv. Energy Mater. 7 1601257

[164]

Wang K, Zou W J, Quan B G, Yu A F, Wu H P, Jiang P and Wei Z X 2011 An all-solid-state flexible micro-supercapacitor on a chip Adv. Energy Mater. 1 1068–72

[165]

Hu H B and Hua T 2017 An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors J. Mater. Chem. A 5 19639–48

[166]

Xia Y, Mathis T S, Zhao M Q, Anasori B, Dang A L, Zhou Z H, Cho H, Gogotsi Y and Yang S 2018 Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes Nature 557 409–12

[167]

Li L, Lou Z, Han W and Shen G Z 2016 Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications Nanoscale 8 14986–91

[168]

Qin J Q, Wang S, Zhou F, Das P, Zheng S H, Sun C L, Bao X H and Wu Z S 2019 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte Energy Storage Mater. 18 397–404

[169]

Mu X M, Du J W, Zhang Y X, Liang Z L, Wang H, Huang B Y, Zhou J Y, Pan X J, Zhang Z X and Xie E Q 2017 Construction of hierarchical CNT/rGO-supported MnMoO4 nanosheets on Ni foam for high-performance aqueous hybrid supercapacitors ACS Appl. Mater. Interfaces 9 35775–84

[170]

Zhang Y X et al 2019 Versatile electrochemical activation strategy for high-performance supercapacitor in a model of MnO2 J. Mater. Chem. A 7 21290–8

[171]

Zhao H W, Zhu Y J, Li F S, Hao R, Wang S X and Guo L 2017 A generalized strategy for the synthesis of large-size ultrathin two-dimensional metal oxide nanosheets Angew. Chem., Int. Ed. 56 8766–70

[172]

Liu S H, Zhang J, Dong R H, Gordiichuk P, Zhang T, Zhuang X D, Mai Y Y, Liu F, Herrmann A and Feng X L 2016 Two-dimensional mesoscale-ordered conducting polymers Angew. Chem., Int. Ed. 55 12516–21

[173]

Zheng S H, Lei W W, Qin J Q, Wu Z S, Zhou F, Wang S, Shi X Y, Sun C L, Chen Y and Bao X H 2018 All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator Energy Storage Mater. 10 24–31

[174]

Liu Z H, Tian X C, Xu X, He L, Yan M Y, Han C H, Li Y, Yang W and Mai L Q 2017 Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors Nano Res. 10 2471–81

[175]

Yue Y et al 2016 A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil ACS Nano 10 11249–57

[176]

Mahmoudzadeh Andwari A, Pesiridis A, Rajoo S, Martinez-Botas R and Esfahanian V 2017 A review of battery electric vehicle technology and readiness levels Renew. Sustain. Energy Rev. 78 414–30

[177]

Wang L, Zhang G H, Liu Q H and Duan H G 2018 Recent progress in Zn-based anodes for advanced lithium ion batteries Mater. Chem. Front. 2 1414–35

[178]

Carter R, Cruden A and Hall P J 2012 Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle IEEE Trans. Veh. Technol. 61 1526–33

[179]

Conway B E and Pell W G 2003 Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices J. Solid State Electrochem. 7 637–44

[180]

Winter M and Brodd R J 2004 What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 4245–70

[181]

Gu F, Guo J F, Yao X, Summers P A, Widijatmoko S D and Hall P 2017 An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China J. Clean. Prod. 161 765–80

[182]

Ding J, Hu W B, Paek E and Mitlin D 2018 Review of hybrid ion capacitors: from aqueous to lithium to sodium Chem. Rev. 118 6457–98

[183]

Sikha G and Popov B N 2004 Performance optimization of a battery-capacitor hybrid system J. Power Sources 134 130–8

[184]

Hannan M A, Lipu M S H, Hussain A and Mohamed A 2017 A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations Renew. Sustain. Energy Rev. 78 834–54

[185]

Scrosati B 2005 Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells Chem. Rec. 5 286–97

[186]
Amatucci G G 2001 Rechargeable hybrid battery/supercapacitor system US Patent 6252762(https://doi.org/10.7282/T34T6MSN)
[187]

Amatucci G G, Badway F, Du Pasquier A and Zheng T 2001 An asymmetric hybrid nonaqueous energy storage cell J. Electrochem. Soc. 148 A930

[188]

Zheng S H, Ma J M, Wu Z S, Zhou F, He Y B, Kang F Y, Cheng H M and Bao X H 2018 All-solid-state flexible planar lithium ion micro-capacitors Energy Environ. Sci. 11 2001–9

[189]

Zhang P P, Wang L L, Wang F X, Tan D M, Wang G, Yang S, Yu M H, Zhang J, Feng X L and Nonaqueous Na-Ion A 2019 Hybrid micro-supercapacitor with wide potential window and ultrahigh areal energy density Batter. Super. 2 918–23

[190]

Li W H, Zeng L C, Wu Y and Yu Y 2016 Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning Sci. China Mater. 59 287–321

[191]

Chayambuka K, Mulder G, Danilov D L and Notten P H L 2018 Sodium-ion battery materials and electrochemical properties reviewed Adv. Energy Mater. 8 1800079

[192]

Cui C, Wei Z X, Zhou G, Wei W F, Ma J M, Chen L B and Li C C 2018 Quasi-reversible conversion reaction of CoSe2/nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries J. Mater. Chem. A 6 7088–98

[193]

Ji Q Q et al 2017 Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications Nano Lett. 17 4908–16

[194]

Wang X P, Gao J, Cheng Z H, Chen N and Qu L T 2016 A responsive battery with controlled energy release Angew. Chem., Int. Ed. 55 14643–7

[195]

Ye M H, Gao J, Xiao Y K, Xu T, Zhao Y and Qu L T 2017 Metal/graphene oxide batteries Carbon 125 299–307

[196]

Wang H, Wang M and Tang Y B 2018 A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications Energy Storage Mater. 13 1–7

[197]

Liu Z, Li G Z, Cui T, Borodin A, Kuhl C and Endres F 2018 A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite J. Solid State Electrochem. 22 91–101

[198]

Zhang P P, Li Y, Wang G, Wang F X, Yang S, Zhu F, Zhuang X D, Schmidt O G and Feng X L 2019 Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability Adv. Mater. 31 1806005

[199]

Sun G Q, Yang H S, Zhang G F, Gao J, Jin X T, Zhao Y, Jiang L and Qu L T 2018 A capacity recoverable zinc-ion micro-supercapacitor Energy Environ. Sci. 11 3367–74

[200]

Dong L B, Ma X P, Li Y, Zhao L, Liu W B, Cheng J Y, Xu C J, Li B H, Yang Q H and Kang F Y 2018 Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors Energy Storage Mater. 13 96–102

[201]

Chen Z et al 2016 Fast and reversible thermoresponsive polymer switching materials for safer batteries Nat. Energy 1 15009

[202]

Kim D et al 2016 Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices Adv. Mater. 28 748–56

[203]

Sun H, Yang Z B, Chen X L, Qiu L B, You X, Chen P N and Peng H S 2013 Photovoltaic wire with high efficiency attached onto and detached from a substrate using a magnetic field Angew. Chem., Int. Ed. 52 8276–80

[204]

Huang Y, Zhu M S, Huang Y, Pei Z X, Li H F, Wang Z F, Xue Q and Zhi C Y 2016 Multifunctional energy storage and conversion devices Adv. Mater. 28 8344–64

[205]

Zhang P P, Zhu F, Wang F X, Wang J H, Dong R H, Zhuang X D, Schmidt O G and Feng X L 2017 Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window Adv. Mater. 29 1604491

[206]

Jiang Q, Wu C S, Wang Z J, Wang A C, He J H, Wang Z L and Alshareef H N 2018 MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit Nano Energy 45 266–72

[207]

Zhang X Y, Zhao W, Wei L, Jin Y Y, Hou J, Wang X X and Guo X 2019 In-plane flexible solid-state microsupercapacitors for on-chip electronics Energy 170 338–48

[208]

Kim J S, Ko D, Yoo D J, Jung D S, Yavuz C T, Kim N I, Choi I S, Song J Y and Choi J W 2015 A half millimeter thick coplanar flexible battery with wireless recharging capability Nano Lett. 15 2350–7

[209]

Yun J et al 2018 Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor Nano Energy 49 644–54

[210]

Song Y, Wang H B, Cheng X L, Li G K, Chen X X, Chen H T, Miao L M, Zhang X S and Zhang H X 2019 High-efficiency self-charging smart bracelet for portable electronics Nano Energy 55 29–36

[211]

Nasreldin M, Delattre R, Ramuz M, Lahuec C and Djenizian T 2019 de Bougrenet de la Tocnaye J L. Flexible micro-battery for powering smart contact lens Sensors 19 2062

[212]

Lin Y J, Chen J Q, Tavakoli M M, Gao Y, Zhu Y D, Zhang D Q, Kam M, He Z B and Fan Z Y 2019 Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates Adv. Mater. 31 1804285

[213]

Qiu M J, Sun P, Cui G F, Tong Y X and Mai W J 2019 A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging ACS Nano 13 8246–55

[214]

Zhu M S, Wang Z G, Li H F, Xiong Y, Liu Z X, Tang Z J, Huang Y, Rogach A L and Zhi C Y 2018 Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen Energy Environ. Sci. 11 2414–22

[215]

Wang Y X, Li Q Y, Cartmell S, Li H D, Mendoza S, Zhang J G, Deng Z D and Xiao J 2018 Fundamental understanding and rational design of high energy structural microbatteries Nano Energy 43 310–6

[216]

Guo R S, Chen J T, Yang B J, Liu L Y, Su L J, Shen B S and Yan X B 2017 In-plane micro-supercapacitors for an integrated device on one piece of paper Adv. Funct. Mater. 27 1702394

[217]

Dai S G et al 2019 In situ Raman study of nickel bicarbonate for high-performance energy storage device Nano Energy 64 103919

[218]

Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S and Ji X B 2020 H+-insertion boosted α-MnO2 for an aqueous Zn-Ion battery Small 16 1905842

[219]

Li Y, Cheng X, Zhang Y and Zhao K 2019 Recent advance in understanding the electro-chemo-mechanical behavior of lithium-ion batteries by electron microscopy Mater. Today Nano 7 100040

[220]

Blanc F, Leskes M and Grey C P 2013 In situ solid-state nmr spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells Acc. Chem. Res. 46 1952–63

International Journal of Extreme Manufacturing
Pages 042001-042001
Cite this article:
Liu H, Zhang G, Zheng X, et al. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2(4): 042001. https://doi.org/10.1088/2631-7990/abba12

536

Views

10

Downloads

112

Crossref

N/A

Web of Science

91

Scopus

0

CSCD

Altmetrics

Received: 04 July 2020
Revised: 05 August 2020
Accepted: 19 September 2020
Published: 13 October 2020
© 2020 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return